Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide

被引:25
作者
Xu, Dian [1 ,2 ]
Xu, Zexian [1 ,2 ]
Cheng, Lidi [1 ,2 ]
Gao, Xiaohan [1 ,2 ]
Sun, Jian [1 ,2 ,3 ,4 ]
Chen, Liqiang [1 ,2 ,3 ,4 ]
机构
[1] Qingdao Univ, Affiliated Hosp, Qingdao 266003, Peoples R China
[2] Qingdao Univ, Sch Stomatol, Qingdao 266003, Peoples R China
[3] Dent Digital Med & 3D Printing Engn Lab Qingdao, Qingdao 266003, Peoples R China
[4] Shandong Prov Key Lab Digital Med & Comp Assisted, Qingdao 266003, Peoples R China
关键词
3Dprinting; nMgO; nHA; PLA; Tissueengineeringscaffold; Osteogenesis; Crystallinity; CRYSTALLIZATION BEHAVIOR; DEGRADATION; PLA; COMPOSITE; ADHESION; MATRIX; MG;
D O I
10.1016/j.heliyon.2022.e09748
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Porous bone scaffolds based on high-precision 3D printing technology gave recently been developed for use in bone defect repair. However, conventional scaffold materials have poor mechanical properties and low osteogenic activity, limiting their clinical use. In this study, a porous composite tissue-engineered bone scaffold was prepared using polylactic acid, nano-hydroxyapatite, and nano-magnesium oxide as raw materials for high-precision 3D printing. The composite scaffold takes full advantage of the personalized manufacturing features of 3D printers and can be used to repair complex bone defects in clinical settings. The composite scaffold combines the ad-vantages of nano-hydroxyapatite, which improves the formability of scaffold printing, and of nano-magnesium oxide, which regulates pH during degradation and provide a good environment for cell growth. Additionally, nano-magnesium oxide and nano-hydroxyapatite have a bidirectional effect on promoting the compressive strength and osteogenic activity of the scaffolds. The prepared composite porous scaffolds based on 3D printing technology show promise for bone defect repair.
引用
收藏
页数:10
相关论文
共 56 条
[1]   Biodegradation and biocompatibility of PLA and PLGA microspheres [J].
Anderson, James M. ;
Shive, Matthew S. .
ADVANCED DRUG DELIVERY REVIEWS, 2012, 64 :72-82
[2]   Antimicrobial Polymeric Composites with Embedded Nanotextured Magnesium Oxide [J].
Anicic, Nemanja ;
Kurtjak, Mario ;
Jeverica, Samo ;
Suvorov, Danilo ;
Vukomanovic, Marija .
POLYMERS, 2021, 13 (13)
[3]   A microfluidics-based method for culturing osteoblasts on biomimetic hydroxyapatite [J].
Atif, Abdul Raouf ;
Pujari-Palmer, Michael ;
Tenje, Maria ;
Mestres, Gemma .
ACTA BIOMATERIALIA, 2021, 127 :327-337
[4]   Comprehensive data on the mechanical properties and biodegradation profile of polylactide composites developed for hard tissue repairs [J].
Aworinde, Abraham K. ;
Adeosun, Samson O. ;
Oyawale, Festus A. ;
Emagbetere, Eyere ;
Ishola, Felix A. ;
Olatunji, Obafemi ;
Akinlabi, Stephen A. ;
Oyedepo, Sunday O. ;
Ajayi, Oluseyi O. ;
Akinlabi, Esther T. .
DATA IN BRIEF, 2020, 32
[5]   Bone tissue engineering using 3D printing [J].
Bose, Susmita ;
Vahabzadeh, Sahar ;
Bandyopadhyay, Amit .
MATERIALS TODAY, 2013, 16 (12) :496-504
[6]   Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding [J].
Butt, Muhammad Shoaib ;
Bai, Jing ;
Wan, Xiaofeng ;
Chu, Chenglin ;
Xue, Feng ;
Ding, Hongyan ;
Zhou, Guanghong .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 70 :141-147
[7]   CRYSTALLIZATION BEHAVIOR OF POLY(ETHERETHERKETONE) [J].
CEBE, P ;
HONG, SD .
POLYMER, 1986, 27 (08) :1183-1192
[8]   Magnesium Oxide Nanoparticle Coordinated Phosphate-Functionalized Chitosan Injectable Hydrogel for Osteogenesis and Angiogenesis in Bone Regeneration [J].
Chen, Yingqi ;
Sheng, Weibei ;
Lin, Jianjing ;
Fang, Chongzhou ;
Deng, Jiapeng ;
Zhang, Peng ;
Zhou, Meng ;
Liu, Peng ;
Weng, Jian ;
Yu, Fei ;
Wang, Deli ;
Kang, Bin ;
Zeng, Hui .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (06) :7592-7608
[9]   Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation [J].
Cui, Liguo ;
Zhang, Jin ;
Zou, Jun ;
Yang, Xianrui ;
Guo, Hui ;
Tian, Huayu ;
Zhang, Peibiao ;
Wang, Yu ;
Zhang, Ning ;
Zhuang, Xiuli ;
Li, Zhongming ;
Ding, Jianxun ;
Chen, Xuesi .
BIOMATERIALS, 2020, 230
[10]   Nanostructured Polymeric Scaffolds for Orthopaedic Regenerative Engineering [J].
Deng, Meng ;
James, Roshan ;
Laurencin, Cato T. ;
Kumbar, Sangamesh G. .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2012, 11 (01) :3-14