Time-Non-Local Pearson Diffusions

被引:7
作者
Ascione, Giacomo [1 ]
Leonenko, Nikolai [2 ]
Pirozzi, Enrica [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, I-80126 Naples, Italy
[2] Cardiff Univ, Sch Math, Cardiff CF24 4AG, Wales
关键词
Subordinator; Bernstein functions; Classical orthogonal polynomials; Spectral decomposition; Fractional diffusions;
D O I
10.1007/s10955-021-02786-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we focus on strong solutions of some heat-like problems with a non-local derivative in time induced by a Bernstein function and an elliptic operator given by the generator or the Fokker-Planck operator of a Pearson diffusion, covering a large class of important stochastic processes. Such kind of time-non-local equations naturally arise in the treatment of particle motion in heterogeneous media. In particular, we use spectral decomposition results for the usual Pearson diffusions to exploit explicit solutions of the aforementioned equations. Moreover, we provide stochastic representation of such solutions in terms of time-changed Pearson diffusions. Finally, we exploit some further properties of these processes, such as limit distributions and long/short-range dependence.
引用
收藏
页数:42
相关论文
共 76 条
[1]  
Abramowitz M., 1988, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
[2]   Applications of inverse tempered stable subordinators [J].
Alrawashdeh, Mahmoud S. ;
Kelly, James F. ;
Meerschaert, Mark M. ;
Scheffler, Hans-Peter .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :892-905
[3]  
Amrein W. O., 2005, STURM LIOUVILLE THEO, DOI [10.1007/3-7643-7359-8, DOI 10.1007/3-7643-7359-8]
[4]  
[Anonymous], 1939, ORTHOGONAL POLYNOMIA
[5]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[6]  
Arista J, 2020, Arxiv, DOI arXiv:2008.07195
[7]   Abstract Cauchy problems for the generalized fractional calculus [J].
Ascione, Giacomo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 209
[8]   Non-local Solvable Birth-Death Processes [J].
Ascione, Giacomo ;
Leonenko, Nikolai ;
Pirozzi, Enrica .
JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (02) :1284-1323
[9]   Fractional immigration-death processes [J].
Ascione, Giacomo ;
Leonenko, Nikolai ;
Pirozzi, Enrica .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (02)
[10]   A Semi-Markov Leaky Integrate-and-Fire Model [J].
Ascione, Giacomo ;
Toaldo, Bruno .
MATHEMATICS, 2019, 7 (11)