An effective collaborative movie recommender system with cuckoo search

被引:73
作者
Katarya, Rahul [1 ]
Verma, Om Prakash [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Sci & Engn, Main Bawana Rd, Delhi 110042, India
关键词
Recommender system; Collaborative filtering; k-mean; Cuckoo search optimization; Movie; CLUSTERING-ALGORITHM;
D O I
10.1016/j.eij.2016.10.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems are information filtering tools that aspire to predict the rating for users and items, predominantly from big data to recommend their likes. Movie recommendation systems provide a mechanism to assist users in classifying users with similar interests. This makes recommender systems essentially a central part of websites and e-commerce applications. This article focuses on the movie recommendation systems whose primary objective is to suggest a recommender system through data clustering and computational intelligence. In this research article, a novel recommender system has been discussed which makes use of k-means clustering by adopting cuckoo search optimization algorithm applied on the Movielens dataset. Our approach has been explained systematically, and the subsequent results have been discussed. It is also compared with existing approaches, and the results have been analyzed and interpreted. Evaluation metrics such as mean absolute error (MAE), standard deviation (SD), root mean square error (RMSE) and t-value for the movie recommender system delivers better results as our approach offers lesser value of the mean absolute error, standard deviation, and root mean square error. The experiment results obtained on Movielens dataset stipulate that the proposed approach may provide high performance regarding reliability, efficiency and delivers accurate personalized movie recommendations when compared with existing methods. Our proposed system (K-mean Cuckoo) has 0.68 MAE, which is superior to existing work (0.78 MAE) [1] and also has improvement of our previous work (0.75 MAE) [2]. (C) 2016 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo University.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 46 条
[1]   Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions [J].
Adomavicius, G ;
Tuzhilin, A .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (06) :734-749
[2]   A k-mean clustering algorithm for mixed numeric and categorical data [J].
Ahmad, Amir ;
Dey, Lipika .
DATA & KNOWLEDGE ENGINEERING, 2007, 63 (02) :503-527
[3]  
[Anonymous], FOOD BIOPHYSICS
[4]   Recommender systems survey [J].
Bobadilla, J. ;
Ortega, F. ;
Hernando, A. ;
Gutierrez, A. .
KNOWLEDGE-BASED SYSTEMS, 2013, 46 :109-132
[5]  
Borras J, 2014, EXPERT SYST APPL
[6]   Intelligent tourism recommender systems: A survey [J].
Borras, Joan ;
Moreno, Antonio ;
Valls, Aida .
EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (16) :7370-7389
[7]  
Burke R, ADAPT WEB, V2007, P377
[8]   Recommender systems based on user reviews: the state of the art [J].
Chen, Li ;
Chen, Guanliang ;
Wang, Feng .
USER MODELING AND USER-ADAPTED INTERACTION, 2015, 25 (02) :99-154
[9]   Collaborative filtering recommender systems [J].
Ekstrand M.D. ;
Riedl J.T. ;
Konstan J.A. .
Foundations and Trends in Human-Computer Interaction, 2010, 4 (02) :81-173
[10]   A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis [J].
Fahad, Adil ;
Alshatri, Najlaa ;
Tari, Zahir ;
Alamri, Abdullah ;
Khalil, Ibrahim ;
Zomaya, Albert Y. ;
Foufou, Sebti ;
Bouras, Abdelaziz .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2014, 2 (03) :267-279