Confining Ni and ceria in silica shell as synergistic multifunctional catalyst for methane dry reforming reaction

被引:63
作者
Han, Kaihang [1 ]
Xu, Shengyuan [1 ]
Wang, Yan [1 ]
Wang, Shuo [1 ]
Zhao, Long [1 ]
Kambonde, Jerricia [1 ]
Yu, Hao [3 ]
Shi, Weidong [1 ]
Wang, Fagen [1 ,2 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
[2] CAS Key Lab Renewable Energy, Guangzhou 510640, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Chem & Environm Engn, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane dry reforming; Multifunction catalyst; (Ni/CeO2)@SiO2; Size effect; Metal-support interaction; Confinement effect; MESOPOROUS NANOCRYSTALLINE ZIRCONIA; CARBON-DIOXIDE; HIGHLY EFFICIENT; NI/SIO2; CATALYST; CO2; METHANATION; COKE-RESISTANCE; CH4; OXIDATION; SUPPORT; CEO2;
D O I
10.1016/j.jpowsour.2021.230232
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni catalysts are the most investigated for methane dry reforming reaction, but sintering of Ni nanoparticles and deposition of carbon are great challenges for performance stability. To overcome the obstacles, synergistic multifunctional (Ni/CeO2)@SiO2 catalyst by confining Ni nanoparticles and CeO2 nanocrystals in SiO2 nano spheres is synthesized in this work. The core construction promotes reaction activity and reduces carbon deposition, and the shell confines migration of the core components to maintain their sizes. The functions contribute to the enhanced performance of methane dry reforming reaction. High resolution Transmission electron microscopy, X-ray power diffraction, Hydrogen temperature programmed reduction etc. suggest that the great enhancements are due to the synergetic multifunction of the size effect and the strong metal-support interaction from Ni and CeO2, and the confinement effect from SiO2 in the catalyst. This finding about the synergetic strategy provides an efficient way to completely resolve Ni sintering and carbon formation in methane dry reforming, and is highly applicable to other reactions that suffering sintering and carbon deposition.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Atomically dispersed nickel as coke-resistant active sites for methane dry reforming [J].
Akri, Mohcin ;
Zhao, Shu ;
Li, Xiaoyu ;
Zang, Ketao ;
Lee, Adam F. ;
Isaacs, Mark A. ;
Xi, Wei ;
Gangarajula, Yuvaraj ;
Luo, Jun ;
Ren, Yujing ;
Cui, Yi-Tao ;
Li, Lei ;
Su, Yang ;
Pan, Xiaoli ;
Wen, Wu ;
Pan, Yang ;
Wilson, Karen ;
Li, Lin ;
Qiao, Botao ;
Ishii, Hirofumi ;
Liao, Yen-Fa ;
Wang, Aiqin ;
Wang, Xiaodong ;
Zhang, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   The CO2-CeO2 interaction and its role in the CeO2 reactivity [J].
Appel, LG ;
Eon, JG ;
Schmal, M .
CATALYSIS LETTERS, 1998, 56 (04) :199-202
[3]   Catalyst design for dry reforming of methane: Analysis review [J].
Aramouni, Nicolas Abdel Karim ;
Touma, Jad G. ;
Abu Tarboush, Belal ;
Zeaiter, Joseph ;
Ahmad, Mohammad N. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2570-2585
[4]  
Bai J., 2020, J ALLOYS COMPD, P57837
[5]   Steam, dry and autothermal methane reforming for hydrogen production: A thermodynamic equilibrium analysis [J].
Carapellucci, Roberto ;
Giordano, Lorena .
JOURNAL OF POWER SOURCES, 2020, 469
[6]   The physical chemistry and materials science behind sinter-resistant catalysts [J].
Dai, Yunqian ;
Lu, Ping ;
Cao, Zhenming ;
Campbell, Charles T. ;
Xia, Younan .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (12) :4314-4331
[7]   Silica-Ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights [J].
Das, S. ;
Ashok, J. ;
Bian, Z. ;
Dewangan, N. ;
Wai, M. H. ;
Du, Y. ;
Borgna, A. ;
Hidajat, K. ;
Kawi, S. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 230 :220-236
[8]   Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 [J].
Das, Sonali ;
Perez-Ramirez, Javier ;
Gong, Jinlong ;
Dewangan, Nikita ;
Hidajat, Kus ;
Gates, Bruce C. ;
Kawi, Sibudjing .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (10) :2937-3004
[9]   Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars [J].
Ding, Shuai ;
Liu, Yangxian .
FUEL, 2020, 260
[10]   Reaction-Induced Strong Metal-Support Interactions between Metals and Inert Boron Nitride Nanosheets [J].
Dong, Jinhu ;
Fu, Qiang ;
Li, Haobo ;
Xiao, Jianping ;
Yang, Bing ;
Zhang, Bingsen ;
Bai, Yunxing ;
Song, Tongyuan ;
Zhang, Rankun ;
Gao, Lijun ;
Cai, Jun ;
Zhang, Hui ;
Liu, Zhi ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (40) :17167-17174