Extended finite automata over groups

被引:27
作者
Mitrana, V
Stiebe, R
机构
[1] Univ Bucharest, Fac Math, Bucharest 70109, Romania
[2] Univ Magdeburg, Fac Comp Sci, D-39016 Magdeburg, Germany
关键词
finite automata over groups; closure properties; accepting capacity; interchange lemma; free groups;
D O I
10.1016/S0166-218X(00)00200-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some results from Dassow and Mitrana (Internat. J. Comput. Algebra (2000)), Griebach (Theoret. Comput. Sci. 7 (1978) 311)and Ibarra et al. (Theoret. Comput. Sci. 2 (1976) 271) are generalized Fur finite automata over arbitrary groups. The closure properties of these automata are poorer and the accepting power is smaller when abelian groups are considered. We prove that the addition of any abelian group to a finite automaton is less powerful than the addition of the multiplicative group of rational numbers. Thus, each language accepted by a finite automaton over an abelian group is actually a unordered vector language, Characterizations of the context-free and recursively enumerable languages classes are set up in the case of non-abelian groups. We investigate also deterministic finite automata over groups, especially over abelian groups. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:287 / 300
页数:14
相关论文
共 8 条
[1]  
[Anonymous], 1997, HDB FORMAL LANGUAGES, DOI DOI 10.1007/978-3-662-07675-0
[2]  
Dassow J., 2012, Regulated Rewriting in Formal Language Theory
[3]  
DASSOW J, 2000, IN PRESS INT J COMPU
[4]  
GINSBURG S, 1969, MEM AM MATH SOC, V87, P1
[5]  
GRIEBACH SA, 1978, COMPUT SCI, V7, P311
[6]  
Ibarra O. H., 1976, Theoretical Computer Science, V2, P271, DOI 10.1016/0304-3975(76)90081-5
[7]  
Paun Gh., 1980, REV ROUMAINE MATH PU, V6, P911
[8]  
Rotman J. J., 1995, Grad. Texts in Math., V148