VARIATIONAL PROBLEMS IN WEIGHTED SOBOLEV SPACES ON NON-SMOOTH DOMAINS

被引:3
作者
Soane, Ana Maria [1 ]
Rostamian, Rouben [1 ]
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 21250 USA
关键词
Poisson problem; Helmholtz problem; corner singularities; weighted Sobolev spaces; finite elements; Navier-Stokes equations; STOKES; CONVERGENCE; REGULARITY; EQUATIONS; SYSTEMS;
D O I
10.1090/S0033-569X-2010-01212-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Poisson problem -Delta u = f and the Helmholtz problem -Delta u + lambda u = f in bounded domains with angular corners in the plane and u = 0 on the boundary. On non-convex domains of this type, the solutions are in the Sobolev space HI but not in H(2) in general, even though f may be very regular. We formulate these as variational problems in weighted Sobolev spaces and prove existence and uniqueness of solutions in what would be weighted counterparts of H(2) boolean AND H(0)(1). The specific forms of our variational formulations are motivated by, and are particularly suited to, applying a finite element scheme for solving the time-dependent Navier-Stokes equations of fluid mechanics.
引用
收藏
页码:439 / 458
页数:20
相关论文
共 50 条
[41]   The spherical p-harmonic eigenvalue problem in non-smooth domains [J].
Gkikas, Konstantinos T. ;
Veron, Laurent .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (04) :1155-1176
[42]   REGULARITY ESTIMATES FOR THE OBLIQUE DERIVATIVE PROBLEM ON NON-SMOOTH DOMAINS(I) [J].
GUAN PENGFEI ;
E SAWYERDepartment of Mathematics and Statistics McMaster Universityt Hamilton Olltario LSS KI Canada .
ChineseAnnalsofMathematics, 1995, (03) :299-324
[43]   h-p Spectral Element Method for Elliptic Problems on Non-smooth Domains Using Parallel Computers [J].
S. K. Tomar .
Computing, 2006, 78 :117-143
[44]   Asymptotic of solutions for second IBVP for hyperbolic systems in non-smooth domains [J].
Nguyen Manh Hung ;
Phung Kim Chuc .
APPLICABLE ANALYSIS, 2014, 93 (05) :1010-1035
[45]   h-p spectral element method for elliptic problems on non-smooth domains using parallel computers [J].
Tomar, S. K. .
COMPUTING, 2006, 78 (02) :117-143
[46]   Embeddings of weighted Sobolev spaces and degenerate Dirichlet problems involving the weighted p-Laplacian [J].
Gol'dshtein, V. ;
Motreanu, V. V. ;
Ukhlov, A. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (10-11) :905-930
[47]   Non-conforming least-squares spectral element method for Stokes equations on non-smooth domains [J].
Mohapatra, S. ;
Dutt, P. ;
Kumar, B. V. Rathish ;
Gerritsma, Marc, I .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
[48]   The optimal convergence rate of a C1 finite element method for non-smooth domains [J].
Soane, Ana Maria ;
Suri, Manil ;
Rostamian, Rouben .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) :2711-2723
[49]   Discretization of the Poisson equation with non-smooth data and emphasis on non-convex domains [J].
Apel, Thomas ;
Nicaise, Serge ;
Pfefferer, Johannes .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (05) :1433-1454
[50]   An existence result for non-smooth vibro-impact problems [J].
Paoli, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 211 (02) :247-281