VARIATIONAL PROBLEMS IN WEIGHTED SOBOLEV SPACES ON NON-SMOOTH DOMAINS

被引:3
作者
Soane, Ana Maria [1 ]
Rostamian, Rouben [1 ]
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 21250 USA
关键词
Poisson problem; Helmholtz problem; corner singularities; weighted Sobolev spaces; finite elements; Navier-Stokes equations; STOKES; CONVERGENCE; REGULARITY; EQUATIONS; SYSTEMS;
D O I
10.1090/S0033-569X-2010-01212-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Poisson problem -Delta u = f and the Helmholtz problem -Delta u + lambda u = f in bounded domains with angular corners in the plane and u = 0 on the boundary. On non-convex domains of this type, the solutions are in the Sobolev space HI but not in H(2) in general, even though f may be very regular. We formulate these as variational problems in weighted Sobolev spaces and prove existence and uniqueness of solutions in what would be weighted counterparts of H(2) boolean AND H(0)(1). The specific forms of our variational formulations are motivated by, and are particularly suited to, applying a finite element scheme for solving the time-dependent Navier-Stokes equations of fluid mechanics.
引用
收藏
页码:439 / 458
页数:20
相关论文
共 50 条
[31]   Regularity and discrete schemes for the heat equation on non-smooth domains [J].
Chin, Pius W. M. ;
Lubuma, Jean M. -S. ;
Patidar, Kailash C. .
COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 :1170-+
[32]   LOCALIZATION EFFECT FOR DIRICHLET EIGENFUNCTIONS IN THIN NON-SMOOTH DOMAINS [J].
Nazarov, S. A. ;
Perez, E. ;
Taskinen, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (07) :4787-4829
[33]   On the approximate controllability of parabolic problems with non-smooth coefficients [J].
Donato, Patrizia ;
Jose, Editha C. ;
Onofrei, Daniel .
ASYMPTOTIC ANALYSIS, 2021, 122 (3-4) :395-402
[34]   On the direct searches for non-smooth stochastic optimization problems [J].
Huang Tianyun .
JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2009, 20 (04) :889-898
[35]   The Action of √−Δ on Weighted Sobolev Spaces [J].
T. Umeda .
Letters in Mathematical Physics, 2000, 54 :301-313
[36]   Interpolation of weighted Sobolev spaces [J].
Cwikel, Michael ;
Einav, Amit .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (07) :2381-2441
[37]   The action of √-Δ on weighted Sobolev spaces [J].
Umeda, T .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) :301-313
[38]   A note on the Ostrovsky equation in weighted Sobolev spaces [J].
Bustamante, Eddye ;
Jimenez Urrea, Jose ;
Mejia, Jorge .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) :1004-1018
[39]   Regularity in Sobolev and Besov Spaces for Parabolic Problems on Domains of Polyhedral Type [J].
Dahlke, Stephan ;
Schneider, Cornelia .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) :11741-11779
[40]   Concentration of solutions for a singularly perturbed Neumann problem in non-smooth domains [J].
Dipierro, Serena .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (01) :107-126