SiC honeycomb reinforced Al matrix composite with improved tribological performance
被引:15
|
作者:
Zhang, Zhejian
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
Zhang, Zhejian
[1
]
Wei, Zhilei
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
Wei, Zhilei
[1
]
Li, Zhiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
Li, Zhiyuan
[1
]
Hou, Baoqiang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
Hou, Baoqiang
[1
]
Xue, Rong
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
Xue, Rong
[1
]
Xia, Hongyan
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
Xia, Hongyan
[1
]
Shi, Zhongqi
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
Shi, Zhongqi
[1
]
机构:
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
SiC honeycomb ceramic reinforced Al (SiCH/Al) composite with anisotropic microstructure was fabricated by spontaneous infiltration method, and the effect of SiC honeycomb reinforcement on the tribological performance of SiCH/Al composite in axial and radial directions was investigated. The SiC particle reinforced Al (SiCP/Al) composite with the same SiC content was prepared as a counterpart to reveal the effect of SiC reinforcement architecture on the tribological performance of the Al-matrix composites. Compared with the SiCH/Al composite in radial direction and the SiCP/Al composite, the SiCH/Al composite in axial direction shows the highest thermal conductivity of 140.96 W m(-1)K(-1) and hardness of 97.14 H V, which hinder the formation of oxidative wear and eroding of counter ball. Additionally, a mechanical mixed layer can be formed on the worn surface of SiCH/Al composite in axial direction during the friction process. As a consequence, the SiCH/Al composite in axial direction exhibits the optimal tribological performance with the lowest averaged friction coefficient (0.53) and wear rate (0.98 mm(3) N-1 m(-1)). The results indicate that the SiC honeycomb reinforcement is a promising candidate to improve the tribological performance of metal-matrix composites, especially in their axial direction.