Parallel Global Search Algorithm with Local Tuning for Solving Mixed-Integer Global Optimization Problems

被引:0
作者
Barkalov, K. A. [1 ]
Gergel, V. P. [1 ]
Lebedev, I. G. [1 ]
机构
[1] Lobachevskii State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia
关键词
global optimization; non-convex constraints; mixed-integer problems; local tuning; parallel algorithms;
D O I
10.1134/S1995080221070040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider mixed-integer global optimization problems and propose a parallel algorithm for solving problems of this class based on information-statistical approach for solving continuous global optimization problems. Within this algorithm, we suggest using a local tuning scheme based on the assumption that the multiextremality of the discussed problem is weak. We also compare the sequential version of the algorithm with other similar methods. The effectiveness of parallelizing the algorithm has been confirmed by solving a series of mixed-integer global optimization problems on the Lobachevskii supercomputer.
引用
收藏
页码:1492 / 1503
页数:12
相关论文
共 25 条
[11]   On Acceleration of Derivative-Free Univariate Lipschitz Global Optimization Methods [J].
Kvasov, Dmitri E. ;
Mukhametzhanov, Marat S. ;
Nasso, Maria Chiara ;
Sergeyev, Yaroslav D. .
NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT II, 2020, 11974 :413-421
[12]  
Paulavicius R, 2014, SPRINGERBR OPTIM, P1, DOI 10.1007/978-1-4614-9093-7
[13]   Parallel branch and bound for global optimization with combination of Lipschitz bounds [J].
Paulavicius, Remigijus ;
Zilinskas, Julius ;
Grothey, Andreas .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (03) :487-498
[14]   Optimization via FENSAP-ICE of Aircraft Hot-Air Anti-Icing Systems [J].
Pellissier, M. P. C. ;
Habashi, W. G. ;
Pueyo, A. .
JOURNAL OF AIRCRAFT, 2011, 48 (01) :265-276
[15]   Extended ant colony optimization for non-convex mixed integer nonlinear programming [J].
Schlueter, Martin ;
Egea, Jose A. ;
Banga, Julio R. .
COMPUTERS & OPERATIONS RESEARCH, 2009, 36 (07) :2217-2229
[16]  
Sergeyev Y., 2017, Deterministic global optimization
[17]  
Sergeyev YD, 2013, SPRINGERBR OPTIM, P1, DOI [10.1007/978-1-4614-8042-6_1, 10.1007/978-1-4614-8042-6]
[18]   A one-dimensional local tuning algorithm for solving GO problems with partially defined constraints [J].
Sergeyev, Yaroslav D. ;
Kvasov, Dmitri E. ;
Khalaf, Falah M. H. .
OPTIMIZATION LETTERS, 2007, 1 (01) :85-99
[19]   Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints [J].
Sergeyev, YD ;
Pugliese, P ;
Famularo, D .
MATHEMATICAL PROGRAMMING, 2003, 96 (03) :489-512
[20]  
Strongin R., 2014, GLOBAL OPTIMIZATION, V2nd