Passive and active gravity-compensation of LIGHTarm, an exoskeleton for the upper-limb rehabilitation

被引:0
作者
Spagnuolo, Giulio [1 ,2 ]
Malosio, Matteo [1 ,2 ]
Scano, Alessandro [1 ,2 ]
Caimimi, Marco [1 ,2 ]
Legnani, Giovanni [2 ]
Tosatti, Lorenzo Molinari [1 ]
机构
[1] CNR, ITIA, Via Bassini 15, I-20133 Milan, Italy
[2] Univ Brescia, Brescia, Italy
来源
PROCEEDINGS OF THE IEEE/RAS-EMBS INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR 2015) | 2015年
关键词
upper-limb rehabilitation; robotic rehabilitation; exoskeleton design; gravity-compensation; cable-driven system; kinematics; dynamics; STROKE; THERAPY;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper presents LIGHTarm, an exoskeleton for the upper-limb neuro-rehabilitation, characterized by a peculiar kinematic structure, expressly conceived to face shoulder rhythm and elbow singularity issues. The device is developed in two versions. The first prototype of this rehabilitation device is unactuated, achieving gravity compensation through a passively mechanically compensated mechanism obtaining a cost-effective and intrinsically safe solution for semi-autonomous training at home. A limitation of passively gravity-compensated devices is that they lack a dynamically and on-line tunable weight-support. Actuated devices, in respect to non-actuated ones, allow "a step further" in the real-time control of tuning the gravity-compensation feature. Starting from its unactuated version, the actuated version is presented, together with the kinematics and dynamics analyses of the mechanism.
引用
收藏
页码:440 / 445
页数:6
相关论文
共 17 条
[1]  
[Anonymous], 2008, WEARABLE ROBOTS BIOM, DOI DOI 10.1002/9780470987667.FMATTER
[2]  
Caimmi M., BIOMED RES IN PRESS
[3]  
Costello G.A., 1997, Theory of Wire Rope., DOI [10.1007/978-1-4684-0350-3, DOI 10.1007/978-1-4684-0350-3]
[4]   A Randomized Controlled Trial of Gravity-Supported, Computer-Enhanced Arm Exercise for Individuals With Severe Hemiparesis [J].
Housman, Sarah J. ;
Scott, Kelly M. ;
Reinkensmeyer, David J. .
NEUROREHABILITATION AND NEURAL REPAIR, 2009, 23 (05) :505-514
[5]   Effect of a Gravity-Compensating Orthosis on Reaching After Stroke: Evaluation of the Therapy Assistant WREX [J].
Iwamuro, Bridget T. ;
Cruz, Erik G. ;
Connelly, Lauri L. ;
Fischer, Heidi C. ;
Kamper, Derek G. .
ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2008, 89 (11) :2121-2128
[6]   Bilateral and unilateral shoulder girdle kinematics during humeral elevation [J].
Klopcar, N ;
Lenarcic, J .
CLINICAL BIOMECHANICS, 2006, 21 :S20-S26
[7]   Influence of gravity compensation training on synergistic movement patterns of the upper extremity after stroke, a pilot study [J].
Krabben, Thijs ;
Prange, Gerdienke B. ;
Molier, Birgit I. ;
Stienen, Arno H. A. ;
Jannink, Michiel J. A. ;
Buurke, Jaap H. ;
Rietman, Johan S. .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2012, 9
[8]   Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review [J].
Kwakkel, Gert ;
Kollen, Boudewijn J. ;
Krebs, Hermano I. .
NEUROREHABILITATION AND NEURAL REPAIR, 2008, 22 (02) :111-121
[9]  
Lee CC, 2014, ADVANCES IN ROBOT KINEMATICS, P59, DOI 10.1007/978-3-319-06698-1_7
[10]  
MALOSIO M., 2011, 2011 IEEE International Conference on Rehabilitation Robotics, June 29 2011-July 1 2011, P1