β-Amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor α and NMDA receptors

被引:207
作者
Floden, AM [1 ]
Li, SS [1 ]
Combs, CK [1 ]
机构
[1] Univ N Dakota, Sch Med & Hlth Sci, Dept Pharmacol Physiol & Therapeut, Grand Forks, ND 58202 USA
关键词
microglia; TNF alpha; glutamate; NMDA; iNOS; neuron death; inflammation; amyloid; Alzheimer; cytokine;
D O I
10.1523/JNEUROSCI.4998-04.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Although abundant reactive microglia are found associated with beta-amyloid (Abeta) plaques in Alzheimer's disease ( AD) brains, their contribution to cell loss remains speculative. A variety of studies have documented the ability of Abeta fibrils to directly stimulate microglia in vitro to assume a neurotoxic phenotype characterized by secretion of a plethora of proinflammatory molecules. Collectively, these data suggest that activated microglia play a direct role in contributing to neuron death in AD rather than simply a role in clearance after plaque deposition. Although it is clear the Abeta-stimulated microglia acutely secrete toxic oxidizing species, the identity of longer-lived neurotoxic agents remains less defined. We used Abeta-stimulated conditioned media from primary mouse microglia to identify more stable neurotoxic secretions. The NMDA receptor antagonists memantine and 2-amino-5-phosphopetanoic acid as well as soluble tumor necrosis factor alpha(TNFalpha) receptor protect neurons from microglial-conditioned media-dependent death, implicating the excitatory neurotransmitter glutamate and the proinflammatory cytokine TNFalpha as effectors of microglial-stimulated death. Neuron death occurs in an oxidative damage-dependent manner, requiring activity of inducible nitric oxide synthase. Toxicity results from coincident stimulation of the TNFalpha and NMDA receptors, because stimulations of either alone are insufficient to initiate cell death. These findings suggest the hypothesis that AD brains provide the appropriate microglial-mediated inflammatory environment for TNFalpha and glutamate to synergistically stimulate toxic activation of their respective signaling pathways in neurons as a contributing mechanism of cell death.
引用
收藏
页码:2566 / 2575
页数:10
相关论文
共 90 条
  • [1] Inflammation and Alzheimer's disease
    Akiyama, H
    Barger, S
    Barnum, S
    Bradt, B
    Bauer, J
    Cole, GM
    Cooper, NR
    Eikelenboom, P
    Emmerling, M
    Fiebich, BL
    Finch, CE
    Frautschy, S
    Griffin, WST
    Hampel, H
    Hull, M
    Landreth, G
    Lue, LF
    Mrak, R
    Mackenzie, IR
    McGeer, PL
    O'Banion, MK
    Pachter, J
    Pasinetti, G
    Plata-Salaman, C
    Rogers, J
    Rydel, R
    Shen, Y
    Streit, W
    Strohmeyer, R
    Tooyoma, I
    Van Muiswinkel, FL
    Veerhuis, R
    Walker, D
    Webster, S
    Wegrzyniak, B
    Wenk, G
    Wyss-Coray, T
    [J]. NEUROBIOLOGY OF AGING, 2000, 21 (03) : 383 - 421
  • [2] TUMOR-NECROSIS-FACTOR-ALPHA AND TUMOR-NECROSIS-FACTOR-BETA PROTECT NEURONS AGAINST AMYLOID BETA-PEPTIDE TOXICITY - EVIDENCE FOR INVOLVEMENT OF A KAPPA-B-BINDING FACTOR AND ATTENUATION OF PEROXIDE AND CA2+ ACCUMULATION
    BARGER, SW
    HORSTER, D
    FURUKAWA, K
    GOODMAN, Y
    KRIEGLSTEIN, J
    MATTSON, MP
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (20) : 9328 - 9332
  • [3] Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function
    Barger, SW
    Basile, AS
    [J]. JOURNAL OF NEUROCHEMISTRY, 2001, 76 (03) : 846 - 854
  • [4] KINETICS OF SUPEROXIDE DISMUTASE-CATALYZED AND IRON-CATALYZED NITRATION OF PHENOLICS BY PEROXYNITRITE
    BECKMAN, JS
    ISCHIROPOULOS, H
    ZHU, L
    VANDERWOERD, M
    SMITH, C
    CHEN, J
    HARRISON, J
    MARTIN, JC
    TSAI, M
    [J]. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 298 (02) : 438 - 445
  • [5] BIANCA VD, 1999, J BIOL CHEM, V274, P15493
  • [6] Boeckman FA, 1996, J PHARMACOL EXP THER, V279, P515
  • [8] Frequency of stages of Alzheimer-related lesions in different age categories
    Braak, H
    Braak, E
    [J]. NEUROBIOLOGY OF AGING, 1997, 18 (04) : 351 - 357
  • [9] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [10] Anti-death properties of TNF against metabolic poisoning: mitochondrial stabilization by MnSOD
    Bruce-Keller, AJ
    Geddes, JW
    Knapp, PE
    McFall, RW
    Keller, JN
    Holtsberg, FW
    Parthasarathy, S
    Steiner, SM
    Mattson, MP
    [J]. JOURNAL OF NEUROIMMUNOLOGY, 1999, 93 (1-2) : 53 - 71