Low-temperature growth of crystalline Tin(II) monosulfide thin films by atomic layer deposition using a liquid divalent tin precursor

被引:16
作者
Ansari, Mohd Zahid [1 ]
Janicek, Petr [2 ,3 ]
Nandi, Dip K. [1 ]
Slang, Stanislav [3 ]
Bouska, Marek [3 ,4 ]
Oh, Hongjun [5 ]
Shong, Bonggeun [5 ]
Kim, Soo-Hyun [1 ,6 ]
机构
[1] Yeungnam Univ, Sch Mat Sci & Engn, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[2] Univ Pardubice, Fac Chem Technol, Inst Appl Phys & Math, Studentska 95, Pardubice 53210, Czech Republic
[3] Univ Pardubice, Fac Chem Technol, Ctr Mat & Nanotechnol, Studentska 95, Pardubice 53210, Czech Republic
[4] Univ Pardubice, Fac Chem Technol, Dept Graph Arts & Photophys, Studentska 95, Pardubice 53210, Czech Republic
[5] Hongik Univ, Dept Chem Engn, 94 Wausan Ro, Seoul 04066, South Korea
[6] Yeungnam Univ, Inst Mat Technol, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Atomic layer deposition; Tin monosulfide; Sn (II) precursor; Density functional theory; Spectroscopic ellipsometry; CHEMICAL-VAPOR-DEPOSITION; OPTICAL-PROPERTIES; SUBSTRATE-TEMPERATURE; PHYSICAL-PROPERTIES; SNS; SULFIDE; NANOSHEETS; CONSTANTS; SN(II);
D O I
10.1016/j.apsusc.2021.150152
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, better-quality stoichiometric SnS thin films were prepared by atomic layer deposition (ALD) using a liquid divalent Sn precursor, N, N'-di-t-butyl-2-methylpropane-1,2-diamido tin(II) [Sn(dmpa)], and H2S. A relatively high growth per ALD cycle (GPC) value of approximately 0.13 nm/cycle was achieved at 125 degrees C. Furthermore, crystalline SnS films could be grown from room temperature (25 degrees C) to a high temperature of 250 degrees C. Density functional theory (DFT) calculations were used to examine the surface reactions and self-limiting nature of the Sn precursor. Mixed phases of cubic (pi) and orthorhombic (o) SnS films were deposited at low temperatures (25-100 degrees C), whereas only the orthorhombic phase prevailed at high growth temperatures (>125 degrees C) based on the complementary results of X-ray diffractometry (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The optoelectronic properties of the SnS films were further evaluated by spectroscopic ellipsometry (SE) analysis. The results from the SE analysis supported the observed change from mixed pi-SnS and o-SnS to o-SnS with increasing deposition temperature and allowed the determination of the energy bandgap (similar to 1.1 eV) and a relatively broad semi-transparent window (up to 3000 nm). Overall, this new ALD process for obtaining a good quality SnS is applicable even at room temperature (25 degrees C), and we foresee that this process could be of considerable interest for emerging applications.
引用
收藏
页数:13
相关论文
共 62 条
  • [51] Structural, optical and photoelectrochemical properties of phase pure SnS and SnS2 thin films prepared by vacuum evaporation method
    Sharma, Dipika
    Kamboj, Navpreet
    Agarwal, Khushboo
    Mehta, B. R.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 822
  • [52] Advances in synthesis, properties and emerging applications of tin sulfides and its heterostructures
    Shinde, Pratik
    Rout, Chandra Sekhar
    [J]. MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (02) : 516 - 556
  • [53] Overcoming Efficiency Limitations of SnS-Based Solar Cells
    Sinsermsuksakul, Prasert
    Sun, Leizhi
    Lee, Sang Woon
    Park, Helen Hejin
    Kim, Sang Bok
    Yang, Chuanxi
    Gordon, Roy G.
    [J]. ADVANCED ENERGY MATERIALS, 2014, 4 (15)
  • [54] Atomic Layer Deposition of Tin Monosulfide Thin Films
    Sinsermsuksakul, Prasert
    Heo, Jaeyeong
    Noh, Wontae
    Hock, Adam S.
    Gordon, Roy G.
    [J]. ADVANCED ENERGY MATERIALS, 2011, 1 (06) : 1116 - 1125
  • [55] Effect of working pressure on the properties of RF sputtered SnS thin films and photovoltaic performance of SnS-based solar cells
    Son, Seung-Ik
    Shin, Donghyeok
    Son, Young Guk
    Son, Chang Sik
    Kim, Dong Ryeol
    Park, Joo Hyung
    Kim, Seohan
    Hwang, Donghyun
    Song, Pungkeun
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 831
  • [56] Atomic layer deposition of crystalline epitaxial MoS2 nanowall networks exhibiting superior performance in thin-film rechargeable Na-ion batteries
    Sreedhara, M. B.
    Gope, Subhra
    Vishal, Badri
    Datta, Ranjan
    Bhattacharyya, Aninda J.
    Rao, C. N. R.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (05) : 2302 - 2310
  • [57] Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage
    Sun, Wenping
    Rui, Xianhong
    Yang, Dan
    Sun, Ziqi
    Li, Bing
    Zhang, Wenyu
    Zong, Yun
    Madhavi, Srinivasan
    Dou, Shixue
    Yan, Qingyu
    [J]. ACS NANO, 2015, 9 (11) : 11371 - 11381
  • [58] Application of IR variable angle spectroscopic ellipsometry to the determination of free carrier concentration depth profiles
    Tiwald, TE
    Thompson, DW
    Woollam, JA
    Paulson, W
    Hance, R
    [J]. THIN SOLID FILMS, 1998, 313 : 661 - 666
  • [59] Formation mechanism of 2D SnS2 and SnS by chemical vapor deposition using SnCl4 and H2S
    Zhang, Haodong
    Balaji, Yashwanth
    Mehta, Ankit Nalin
    Heyns, Marc
    Caymax, Matty
    Radu, Iuliana
    Vandervorst, Wilfried
    Delabie, Annelies
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (23) : 6172 - 6178
  • [60] Nucleation and growth mechanism of 2D SnS2 by chemical vapor deposition: initial 3D growth followed by 2D lateral growth
    Zhang, Haodong
    van Pelt, Thomas
    Mehta, Ankit Nalin
    Bender, Hugo
    Radu, Iuliana
    Caymax, Matty
    Vandervorst, Wilfried
    Delabie, Annelies
    [J]. 2D MATERIALS, 2018, 5 (03):