Low-temperature growth of crystalline Tin(II) monosulfide thin films by atomic layer deposition using a liquid divalent tin precursor

被引:16
作者
Ansari, Mohd Zahid [1 ]
Janicek, Petr [2 ,3 ]
Nandi, Dip K. [1 ]
Slang, Stanislav [3 ]
Bouska, Marek [3 ,4 ]
Oh, Hongjun [5 ]
Shong, Bonggeun [5 ]
Kim, Soo-Hyun [1 ,6 ]
机构
[1] Yeungnam Univ, Sch Mat Sci & Engn, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[2] Univ Pardubice, Fac Chem Technol, Inst Appl Phys & Math, Studentska 95, Pardubice 53210, Czech Republic
[3] Univ Pardubice, Fac Chem Technol, Ctr Mat & Nanotechnol, Studentska 95, Pardubice 53210, Czech Republic
[4] Univ Pardubice, Fac Chem Technol, Dept Graph Arts & Photophys, Studentska 95, Pardubice 53210, Czech Republic
[5] Hongik Univ, Dept Chem Engn, 94 Wausan Ro, Seoul 04066, South Korea
[6] Yeungnam Univ, Inst Mat Technol, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Atomic layer deposition; Tin monosulfide; Sn (II) precursor; Density functional theory; Spectroscopic ellipsometry; CHEMICAL-VAPOR-DEPOSITION; OPTICAL-PROPERTIES; SUBSTRATE-TEMPERATURE; PHYSICAL-PROPERTIES; SNS; SULFIDE; NANOSHEETS; CONSTANTS; SN(II);
D O I
10.1016/j.apsusc.2021.150152
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, better-quality stoichiometric SnS thin films were prepared by atomic layer deposition (ALD) using a liquid divalent Sn precursor, N, N'-di-t-butyl-2-methylpropane-1,2-diamido tin(II) [Sn(dmpa)], and H2S. A relatively high growth per ALD cycle (GPC) value of approximately 0.13 nm/cycle was achieved at 125 degrees C. Furthermore, crystalline SnS films could be grown from room temperature (25 degrees C) to a high temperature of 250 degrees C. Density functional theory (DFT) calculations were used to examine the surface reactions and self-limiting nature of the Sn precursor. Mixed phases of cubic (pi) and orthorhombic (o) SnS films were deposited at low temperatures (25-100 degrees C), whereas only the orthorhombic phase prevailed at high growth temperatures (>125 degrees C) based on the complementary results of X-ray diffractometry (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The optoelectronic properties of the SnS films were further evaluated by spectroscopic ellipsometry (SE) analysis. The results from the SE analysis supported the observed change from mixed pi-SnS and o-SnS to o-SnS with increasing deposition temperature and allowed the determination of the energy bandgap (similar to 1.1 eV) and a relatively broad semi-transparent window (up to 3000 nm). Overall, this new ALD process for obtaining a good quality SnS is applicable even at room temperature (25 degrees C), and we foresee that this process could be of considerable interest for emerging applications.
引用
收藏
页数:13
相关论文
共 62 条
  • [41] Coordination Chemistry of N-Heterocyclic Stannylenes: A Combined Synthetic and Mossbauer Spectroscopy Study
    Mansell, Stephen M.
    Herber, Rolfe H.
    Nowik, Israel
    Ross, Douglas H.
    Russell, Christopher A.
    Wass, Duncan F.
    [J]. INORGANIC CHEMISTRY, 2011, 50 (06) : 2252 - 2263
  • [42] Thickness-dependent electrochemical response of plasma enhanced atomic layer deposited WS2 anodes in Na-ion battery
    Nandi, Dip K.
    Yeo, Seungmin
    Ansari, Mohd Zahid
    Sinha, Soumyadeep
    Cheon, Taehoon
    Kwon, Jiseok
    Kim, Hyungjun
    Heo, Jaeyeong
    Song, Taeseup
    Kim, Soo-Hyun
    [J]. ELECTROCHIMICA ACTA, 2019, 322
  • [43] High power nano-structured V2O5 thin film cathodes by atomic layer deposition
    Ostreng, Erik
    Gandrud, Knut Bjarne
    Hu, Yang
    Nilsen, Ola
    Fjellvag, Helmer
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (36) : 15044 - 15051
  • [44] Co-optimization of SnS absorber and Zn(O,S) buffer materials for improved solar cells
    Park, Helen Hejin
    Heasley, Rachel
    Sun, Leizhi
    Steinmann, Vera
    Jaramillo, Rafael
    Hartman, Katy
    Chakraborty, Rupak
    Sinsermsuksakul, Prasert
    Chua, Danny
    Buonassisi, Tonio
    Gordon, Roy G.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2015, 23 (07): : 901 - 908
  • [45] Preparation of SnS Thin Films by MOCVD Method Using Single Source Precursor, Bis(3-mercapto-1-propanethiolato) Sn(II)
    Park, Jongpil
    Song, Miyeon
    Jung, Won Mok
    Lee, Won Young
    Lee, Jinho
    Kim, Hanggeun
    Shim, Il-Wun
    [J]. BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2012, 33 (10) : 3383 - 3386
  • [46] The first single source deposition of tin sulfide coatings on glass:: aerosol-assisted chemical vapour deposition using [Sn(SCH2CH2S)2]
    Parkin, IP
    Price, LS
    Hibbert, TG
    Molloy, KC
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (05) : 1486 - 1490
  • [47] Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass
    Price, LS
    Parkin, IP
    Hardy, AME
    Clark, RJH
    Hibbert, TG
    Molloy, KC
    [J]. CHEMISTRY OF MATERIALS, 1999, 11 (07) : 1792 - 1799
  • [48] Preparation and characterisation of sprayed tin sulphide films grown at different precursor concentrations
    Reddy, N. Koteeswara
    Reddy, K. T. Ramakrishna
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2007, 102 (01) : 13 - 18
  • [49] Annealing effect for SnS thin films prepared by high-vacuum evaporation
    Revathi, Naidu
    Bereznev, Sergei
    Loorits, Mihkel
    Raudoja, Jaan
    Lehner, Julia
    Gurevits, Jelena
    Traksmaa, Rainer
    Mikli, Valdek
    Mellikov, Enn
    Volobujeva, Olga
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2014, 32 (06):
  • [50] Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS2: large area, thickness control and tuneable morphology
    Sharma, Akhil
    Verheijen, Marcel A.
    Wu, Longfei
    Karwal, Saurabh
    Vandalon, Vincent
    Knoops, Harm C. M.
    Sundaram, Ravi S.
    Hofmann, Jan P.
    Kessels, W. M. M.
    Bol, Ageeth A.
    [J]. NANOSCALE, 2018, 10 (18) : 8615 - 8627