共 62 条
Low-temperature growth of crystalline Tin(II) monosulfide thin films by atomic layer deposition using a liquid divalent tin precursor
被引:16
作者:
Ansari, Mohd Zahid
[1
]
Janicek, Petr
[2
,3
]
Nandi, Dip K.
[1
]
Slang, Stanislav
[3
]
Bouska, Marek
[3
,4
]
Oh, Hongjun
[5
]
Shong, Bonggeun
[5
]
Kim, Soo-Hyun
[1
,6
]
机构:
[1] Yeungnam Univ, Sch Mat Sci & Engn, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[2] Univ Pardubice, Fac Chem Technol, Inst Appl Phys & Math, Studentska 95, Pardubice 53210, Czech Republic
[3] Univ Pardubice, Fac Chem Technol, Ctr Mat & Nanotechnol, Studentska 95, Pardubice 53210, Czech Republic
[4] Univ Pardubice, Fac Chem Technol, Dept Graph Arts & Photophys, Studentska 95, Pardubice 53210, Czech Republic
[5] Hongik Univ, Dept Chem Engn, 94 Wausan Ro, Seoul 04066, South Korea
[6] Yeungnam Univ, Inst Mat Technol, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
基金:
新加坡国家研究基金会;
关键词:
Atomic layer deposition;
Tin monosulfide;
Sn (II) precursor;
Density functional theory;
Spectroscopic ellipsometry;
CHEMICAL-VAPOR-DEPOSITION;
OPTICAL-PROPERTIES;
SUBSTRATE-TEMPERATURE;
PHYSICAL-PROPERTIES;
SNS;
SULFIDE;
NANOSHEETS;
CONSTANTS;
SN(II);
D O I:
10.1016/j.apsusc.2021.150152
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In this study, better-quality stoichiometric SnS thin films were prepared by atomic layer deposition (ALD) using a liquid divalent Sn precursor, N, N'-di-t-butyl-2-methylpropane-1,2-diamido tin(II) [Sn(dmpa)], and H2S. A relatively high growth per ALD cycle (GPC) value of approximately 0.13 nm/cycle was achieved at 125 degrees C. Furthermore, crystalline SnS films could be grown from room temperature (25 degrees C) to a high temperature of 250 degrees C. Density functional theory (DFT) calculations were used to examine the surface reactions and self-limiting nature of the Sn precursor. Mixed phases of cubic (pi) and orthorhombic (o) SnS films were deposited at low temperatures (25-100 degrees C), whereas only the orthorhombic phase prevailed at high growth temperatures (>125 degrees C) based on the complementary results of X-ray diffractometry (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The optoelectronic properties of the SnS films were further evaluated by spectroscopic ellipsometry (SE) analysis. The results from the SE analysis supported the observed change from mixed pi-SnS and o-SnS to o-SnS with increasing deposition temperature and allowed the determination of the energy bandgap (similar to 1.1 eV) and a relatively broad semi-transparent window (up to 3000 nm). Overall, this new ALD process for obtaining a good quality SnS is applicable even at room temperature (25 degrees C), and we foresee that this process could be of considerable interest for emerging applications.
引用
收藏
页数:13
相关论文