Formability of aluminum 1050A at high temperatures: Numerical modeling and experimental validation

被引:1
作者
Ghazouani, Nejib [1 ]
Eladeb, Boulbaba [2 ]
Tashkandi, Mohammed A. [1 ]
Nasri, Mohamed Toumi [2 ]
机构
[1] Northern Border Univ, Coll Engn, POB 1321 Arar, Northern Borders 73222, Saudi Arabia
[2] Univ Tunis, Ecole Natl Super Ingn Tunis ENSIT, LMPE LR18ES01, 5 Av Taha Hussein, Tunis 1008, Tunisia
来源
LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES | 2021年 / 18卷 / 05期
关键词
Erichsen test; hardening; damage; inverse identification; temperature and thermal gradient; Swift model; ARTIFICIAL NEURAL-NETWORKS; NONASSOCIATED FLOW RULE; FINITE-ELEMENT-ANALYSIS; DUCTILE DAMAGE; SHEET METALS; YIELD FUNCTION; PARAMETER-IDENTIFICATION; FORMING PROCESSES; ALLOY; CRITERION;
D O I
10.1590/1679-78256523
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The sheet metals are prone to large plastic deformation during forming processes. The study purpose is to investigate 1050A aluminum sheets thermomechanical behavior with ductile damage. A modified Swift model coupled to isotropic ductile damage and thermal effects was used. The forming parameters are introduced using Swift model coefficients and Erichsen index. An inverse identification procedure is applied to nonhomogeneous Erichsen test results. Bulge test is then used to validate the identified parameters. Erichsen test (Punch force vs displacement) results were obtained by experimental testing and simulation to build the objective function. Aluminum 1050A plasticity flow parameters and ductile damage variables were identified using a part of Erichsen test results. The remaining part of Erichsen test and bulge test results were used for validation. The numerical approach allowed the detection of failure zones with respect to thermal gradient induced by heat exchange. Within the isothermal condition, equivalent stresses and strains for 1050A Aluminum were obtained by simulations and experimental data.
引用
收藏
页数:21
相关论文
共 79 条
  • [1] Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming
    Abbassi, Fethi
    Belhadj, Touhami
    Mistou, Sebastien
    Zghal, Ali
    [J]. MATERIALS & DESIGN, 2013, 45 : 605 - 615
  • [2] Experimental and numerical analysis of micromechanical damage in the punching process for High-Strength Low-Alloy steels
    Achouri, Mohamed
    Germain, Guenael
    Dal Santo, Philippe
    Saidane, Delphine
    [J]. MATERIALS & DESIGN, 2014, 56 : 657 - 670
  • [3] Parameter identification of a non-associative elastoplastic constitutive model using ANN and multi-objective optimization
    Aguir, H.
    Chamekh, A.
    BelHadjSalah, H.
    Dogui, A.
    Hambli, R.
    [J]. INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2009, 2 (02) : 75 - 82
  • [4] Parameter identification of an elasto-plastic behaviour using artificial neural networks-genetic algorithm method
    Aguir, Hamdi
    BelHadjSalah, Hedi
    Hambli, Ridha
    [J]. MATERIALS & DESIGN, 2011, 32 (01): : 48 - 53
  • [5] An enhanced void-crack-based Rousselier damage model for ductile fracture with the XFEM
    Ahmad, M. I. M.
    Curiel-Sosa, J. L.
    Arun, S.
    Rongong, J. A.
    [J]. INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2019, 28 (06) : 943 - 969
  • [6] [Anonymous], 2001, REV EUROPEENNE ELEME
  • [8] Contribution of numerical and experimental modelling of plastic instabilities of thin sheets hydroforming
    Ayadi, Mahfoudh
    Rezgui, Mohamed Ali
    Cherouat, Abel
    Slimani, Faouzi
    Nasri, Mohamed Toumi
    [J]. MECANIQUE & INDUSTRIES, 2009, 10 (06): : 503 - 518
  • [9] On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming
    Badreddine, Houssem
    Saanouni, Khemais
    Dogui, Abdelwaheb
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2010, 26 (11) : 1541 - 1575
  • [10] Banabic D., 2000, ENG MAT