Crystal structures of Ti(NH4)2P4O13 and Sn(NH4)2P4O13

被引:1
|
作者
Ivashkevich, L. S. [1 ]
Selevich, A. F. [1 ]
Lyakhov, A. S. [1 ]
Lesnikovich, A. I. [1 ]
机构
[1] Belarusian State Univ, Inst Physicochem Problems, Minsk 220050, BELARUS
关键词
Rietveld Method; Ammonium Cation; Titanium Phosphate; Ammonium Polyphosphate; Quantitative Thin Layer Chromatography;
D O I
10.1134/S0036023607080189
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The characteristics of crystal structures of the titanium(IV) diammonium (Ti(NH4)(2)P4O13) and tin(IV) diammonium (Sn(NH4)(2)P4O13) tetraphosphates, which are isostructural with similar silicon(IV) and germanium(IV) salts, have been obtained by the Rietveld method using X-ray powder diffraction data. The compounds crystallize in the triclinic system, space group P (1) over bar, Z = 2, a = 15.0291(7) angstrom, b = 7.9236(4) angstrom, c = 5.0754(3) angstrom, alpha = 99.168(3)degrees, beta = 97.059(3)degrees, gamma = 83.459(3)degrees for Ti(NH4)(2)P4O13 and a = 15.1454(7) angstrom, b = 8.0103(5) angstrom, c = 5.1053(3) angstrom, alpha = 99.898(6)degrees, beta = 96.806(3)degrees, gamma = 83.881(4)degrees for Sn(NH4)(2)P4O13. The structure is refined in the isotropic approximation using the pseudo-Voigt function: R (p) = 0.077, R-Bragg = 0.045, R-F = 0.057 for Ti(NH4)(2)P4O13; R (p) = 0.082, R-Bragg = 0.044, R-F = 0.046 for Sn(NH4)(2)P4O13. The hydrogen atoms of the ammonium cations are placed in the calculated positions. A comparative analysis of the structures of the compounds of the M-IV(NH4)(2)P4O13 (M-IV = Si, Ge, Ti, Sn) series has been carried out.
引用
收藏
页码:1274 / 1279
页数:6
相关论文
共 50 条
  • [1] Crystal structures of Ti(NH4)2P4O13 and Sn(NH4)2P4O13
    L. S. Ivashkevich
    A. F. Selevich
    A. S. Lyakhov
    A. I. Lesnikovich
    Russian Journal of Inorganic Chemistry, 2007, 52 : 1274 - 1279
  • [2] Visualization of the Diffusion Pathway of Protons in (NH4)2Si0.5Ti0.3P4O13 as an Electrolyte for Intermediate-Temperature Fuel Cells
    Sun, Chunwen
    Chen, Lanli
    Shi, Siqi
    Reeb, Berthold
    Alberto Lopez, Carlos
    Antonio Alonso, Jose
    Stimming, Ulrich
    INORGANIC CHEMISTRY, 2018, 57 (02) : 676 - 680
  • [3] Proton conductivity of (NH4)2TiP4O13-based material for intermediate temperature fuel cells
    Matsui, T
    Takeshita, S
    Iriyama, Y
    Abe, T
    Inaba, M
    Ogumi, Z
    ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (02) : 180 - 182
  • [4] Correlation between electrochemical and structural properties in NH4PO3/(NH4)2MP4O13 (M=Ti and Si) composites at intermediate temperatures
    Matsui, Toshiaki
    Takeshita, Shinya
    Iriyama, Yasutoshi
    Abe, Takeshi
    Ogumi, Zempachi
    SOLID STATE IONICS, 2007, 178 (11-12) : 859 - 863
  • [5] Structure and spectral characteristics of (NH4)2[Re2(HPO4)4 · 2H2O]
    A. V. Shtemenko
    V. G. Stolyarenko
    K. V. Domasevich
    Russian Journal of Inorganic Chemistry, 2006, 51 : 1014 - 1019
  • [6] Study on the sorption properties of (NH4)2TiOF4 particles
    Sofronov, Dmitry
    Blank, Tamara
    Khimchenko, Sergey
    Lebedynskiy, Alexey
    Mateychenko, Pavel
    Varchenko, Victoria
    Cherniakova, Marharyta
    Rucki, Miroslaw
    Zurowski, Wojciech
    CHEMICAL ENGINEERING JOURNAL, 2022, 447
  • [7] Synthesis and structure of (NH4)2[(UO2)2(C2O4)(CH3COO)4] · 2H2O
    L. B. Serezhkina
    A. V. Vologzhanina
    N. A. Neklyudova
    V. N. Serezhkin
    M. Yu. Antipin
    Russian Journal of Inorganic Chemistry, 2008, 53 : 1193 - 1196
  • [8] Synthesis and characterization of a new octamolybdate (NH4)4[Mo8O24(C3H2O2)2] · 4H2O
    Shoujiang Wang
    Shaofen Mo
    Zhen-Gang Liu
    Russian Journal of Inorganic Chemistry, 2012, 57 : 430 - 433
  • [9] Synthesis and structure of (NH4)3[UO2(C3H2O4)2(NCS)] · 2H2O
    L. B. Serezhkina
    E. V. Peresypkina
    A. V. Virovets
    Ya. A. Medvedkov
    V. N. Serezhkin
    Crystallography Reports, 2014, 59 : 48 - 52
  • [10] Synthesis and structures of nine-coordinate K[Dy(Edta)(H2O)3] · 3.5H2O, (NH4)3 [Dy(Ttha)] · 5H2O, and eight-coordinate NH4[Dy(Cydta)(H2O)2] · 4.5H2O complexes
    B. Liu
    J. Gao
    J. Wang
    Y. F. Wang
    R. Xu
    P. Hu
    L. Q. Zhang
    X. D. Zhang
    Russian Journal of Coordination Chemistry, 2009, 35 : 422 - 428