Locating Crop Plant Centers From UAV-Based RGB Imagery

被引:13
作者
Chen, Yuhao [1 ]
Ribera, Javier [1 ]
Boomsma, Christopher [2 ]
Delp, Edward [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, Video & Image Proc Lab VIPER, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Agron, Sch Agr, W Lafayette, IN 47907 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017) | 2017年
关键词
LOW-ALTITUDE; FIELD; CLASSIFICATION; RESOLUTION; PHENOMICS;
D O I
10.1109/ICCVW.2017.238
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a method to find the location of crop plants in Unmanned Aerial Vehicle (UAV) imagery. Finding the location of plants is a crucial step to derive and track phenotypic traits for each plant. We describe some initial work in estimating field crop plant locations. We approach the problem by classifying pixels as a plant center or a non plant center. We use Multiple Instance Learning (MIL) to handle the ambiguity of plant center labeling in training data. The classification results are then post-processed to estimate the exact location of the crop plant. Experimental evaluation is conducted to evaluate the method and the result achieved an overall precision and recall of 66% and 64%, respectively.
引用
收藏
页码:2030 / 2037
页数:8
相关论文
共 36 条
[1]   Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop [J].
Agueera Vega, Francisco ;
Carvajal Ramirez, Fernando ;
Perez Saiz, Monica ;
Orgaz Rosua, Francisco .
BIOSYSTEMS ENGINEERING, 2015, 132 :19-27
[2]  
[Anonymous], 1996, Lost Crops of Africa. Volume I: Grains, V1, P127, DOI [10.17226/2305, DOI 10.17226/2305]
[3]   Robust Object Tracking with Online Multiple Instance Learning [J].
Babenko, Boris ;
Yang, Ming-Hsuan ;
Belongie, Serge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1619-1632
[4]   Image-Based High-Throughput Field Phenotyping of Crop Roots [J].
Bucksch, Alexander ;
Burridge, James ;
York, Larry M. ;
Das, Abhiram ;
Nord, Eric ;
Weitz, Joshua S. ;
Lynch, Jonathan P. .
PLANT PHYSIOLOGY, 2014, 166 (02) :470-486
[5]   Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping [J].
Chapman, Scott C. ;
Merz, Torsten ;
Chan, Amy ;
Jackway, Paul ;
Hrabar, Stefan ;
Dreccer, M. Fernanda ;
Holland, Edward ;
Zheng, Bangyou ;
Ling, T. Jun ;
Jimenez-Berni, Jose .
AGRONOMY-BASEL, 2014, 4 (02) :279-301
[6]   UNCERTAINTY RELATION FOR RESOLUTION IN SPACE, SPATIAL-FREQUENCY, AND ORIENTATION OPTIMIZED BY TWO-DIMENSIONAL VISUAL CORTICAL FILTERS [J].
DAUGMAN, JG .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (07) :1160-1169
[7]  
Davies E. R., 2004, MACHINE VISION THEOR, P161
[8]   Rosette Tracker: An Open Source Image Analysis Tool for Automatic Quantification of Genotype Effects [J].
De Vylder, Jonas ;
Vandenbussche, Filip ;
Hu, Yuming ;
Philips, Wilfried ;
Van Der Straeten, Dominique .
PLANT PHYSIOLOGY, 2012, 160 (03) :1149-1159
[9]   Solving the multiple instance problem with axis-parallel rectangles [J].
Dietterich, TG ;
Lathrop, RH ;
LozanoPerez, T .
ARTIFICIAL INTELLIGENCE, 1997, 89 (1-2) :31-71
[10]  
Dollár P, 2008, LECT NOTES COMPUT SC, V5303, P211, DOI 10.1007/978-3-540-88688-4_16