Epidermal Growth Factor Receptor Exposed to Oxidative Stress Undergoes Src- and Caveolin-1-dependent Perinuclear Trafficking

被引:132
作者
Khan, Elaine M.
Heidinger, Jill M.
Levy, Michal
Lisanti, Michael P. [2 ,3 ,4 ]
Ravid, Tommer [5 ]
Goldkorn, Tzipora [1 ]
机构
[1] Univ Calif Davis, Genome & Biomed Sci Facil, Dept Internal Med, Signal Transduct Lab,Sch Med, Davis, CA 95616 USA
[2] Albert Einstein Coll Med, Dept Mol Pharmacol, Bronx, NY 10461 USA
[3] Albert Einstein Coll Med, Dept Med, Bronx, NY 10461 USA
[4] Albert Einstein Coll Med, Albert Einstein Canc Ctr, Bronx, NY 10461 USA
[5] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
Cells;
D O I
10.1074/jbc.M509332200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The epidermal growth factor (EGF) receptor (EGFR) has been found to be overexpressed in several types of cancer cells, and the regulation of its oncogenic potential has been widely studied. The paradigm for EGFR down-regulation involves the trafficking of activated receptor molecules from the plasma membrane, through clathrin-coated pits, and into the cell for lysosomal degradation. We have previously shown that oxidative stress generated by H2O2 results in aberrant phosphorylation of the EGFR. This leads to the loss of c-Cbl-mediated ubiquitination of the EGFR and, consequently, prevents its degradation. However, we have found that c-Cbl-mediated ubiquitination is required solely for degradation but not for internalization of the EGFR under oxidative stress. To further examine the fate of the EGFR under oxidative stress, we used confocal analysis to show that the receptor not only remains colocalized with caveolin-1 at the plasma membrane, but at longer time points, is also sorted to a perinuclear compartment via a clathrin-independent, caveolae-mediated pathway. Our findings indicate that although the EGFR associates with caveolin-1 constitutively, caveolin-1 is hyperphosphorylated only under oxidative stress, which is essential in transporting the EGFR to a perinuclear location, where it is not degraded and remains active. Thus, oxidative stress may have a role in tumorigenesis by not only activating the EGFR but also by promoting prolonged activation of the receptor both at the plasma membrane and within the cell.
引用
收藏
页码:14486 / 14493
页数:8
相关论文
共 41 条
[1]   Threonine phosphorylation diverts internalized epidermal growth factor receptors from a degradative pathway to the recycling endosome [J].
Bao, J ;
Alroy, I ;
Waterman, H ;
Schejter, ED ;
Brodie, C ;
Gruenberg, J ;
Yarden, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26178-26186
[2]   c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function [J].
Biscardi, JS ;
Maa, MC ;
Tice, DA ;
Cox, ME ;
Leu, TH ;
Parsons, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :8335-8343
[3]   Oxidative stress activates both Src-kinases and their negative regulator Csk and induces phosphorylation of two targeting proteins for Csk: caveolin-1 and paxillin [J].
Cao, HM ;
Sanguinetti, AR ;
Mastick, CC .
EXPERIMENTAL CELL RESEARCH, 2004, 294 (01) :159-171
[4]   Caveolae: Mining little caves for new cancer targets [J].
Carver, LA ;
Schnitzer, JE .
NATURE REVIEWS CANCER, 2003, 3 (08) :571-581
[5]   Interaction of a receptor tyrosine kinase, EGF-R, with caveolins - Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities [J].
Couet, J ;
Sargiacomo, M ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (48) :30429-30438
[6]  
de Melker AA, 2001, J CELL SCI, V114, P2167
[7]   An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels [J].
Diamonti, AJ ;
Guy, PM ;
Ivanof, C ;
Wong, K ;
Sweeney, C ;
Carraway, KL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :2866-2871
[8]  
Dikic I, 2003, BIOCHEM SOC T, V31, P1178
[9]  
ECCLES SA, 1994, INVAS METAST, V14, P337
[10]   DE-NOVO FORMATION OF CAVEOLAE IN LYMPHOCYTES BY EXPRESSION OF VIP21-CAVEOLIN [J].
FRA, AM ;
WILLIAMSON, E ;
SIMONS, K ;
PARTON, RG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8655-8659