Duality results for interval-valued semiinfinite optimization problems with equilibrium constraints using convexificators

被引:6
作者
Lai, K. K. [1 ]
Mishra, S. K. [2 ]
Hassan, Mohd [2 ]
Bisht, Jaya [2 ]
Maurya, J. K. [3 ]
机构
[1] Shaanxi Normal Univ, Int Business Sch, Xian 710119, Peoples R China
[2] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
[3] Kashi Naresh Govt Postgrad Coll, Dept Math, Bhadohi 221304, Uttar Pradesh, India
关键词
MATHEMATICAL-PROGRAMMING PROBLEMS; OPTIMALITY CONDITIONS;
D O I
10.1186/s13660-022-02866-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the study of interval-valued semiinfinite optimization problems with equilibrium constraints (ISOPEC) using convexificators. First, we formulate Wolfe-type dual problem for (ISOPEC) and establish duality results between the (ISOPEC) and the corresponding Wolfe-type dual under the assumption of partial derivative*-convexity. Second, we formulate Mond-Weir-type dual problem and propose duality results between the (ISOPEC) and the corresponding Mond-Weir-type dual under the assumption of partial derivative*-convexity, partial derivative*-pseudoconvexity, and partial derivative*-quasiconvexity.
引用
收藏
页数:18
相关论文
共 36 条
  • [1] Optimality conditions for nonsmooth mathematical programs with equilibrium constraints, using convexificators
    Ardali, A. Ansari
    Movahedian, N.
    Nobakhtian, S.
    [J]. OPTIMIZATION, 2016, 65 (01) : 67 - 85
  • [2] Proximal methods in vector optimization
    Bonnel, H
    Iusem, AN
    Svaiter, BF
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) : 953 - 970
  • [3] Bot RI, 2009, VECTOR OPTIM, P1, DOI 10.1007/978-3-642-02886-1_1
  • [4] Demyanov V., 1994, Report, V3, P802
  • [5] Hunting for a smaller convex subdifferential
    Demyanov, VF
    Jeyakumar, V
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1997, 10 (03) : 305 - 326
  • [6] Duality for nonsmooth mathematical programming problems with equilibrium constraints
    Guu, Sy-Ming
    Mishra, Shashi Kant
    Pandey, Yogendra
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 15
  • [7] On M-Stationary Conditions and Duality for Multiobjective Mathematical Programs with Vanishing Constraints
    Hassan, Mohd
    Maurya, J. K.
    Mishra, S. K.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (03) : 1315 - 1341
  • [8] Nonsmooth calculus, minimality, and monotonicity of convexificators
    Jeyakumar, V
    Luc, DT
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 101 (03) : 599 - 621
  • [9] Kim Y, 2020, Bilevel optimization: Advances and next challenges. Springer optimization and its applications, P335, DOI DOI 10.1007/978-3-030-52119-612
  • [10] Semidefinite Multiobjective Mathematical Programming Problems with Vanishing Constraints Using Convexificators
    Lai, Kin Keung
    Hassan, Mohd
    Singh, Sanjeev Kumar
    Maurya, Jitendra Kumar
    Mishra, Shashi Kant
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (01)