Atomic-scale finite element modelling of mechanical behaviour of graphene nanoribbons

被引:12
|
作者
Damasceno, D. A. [1 ]
Mesquita, E. [1 ]
Rajapakse, R. K. N. D. [2 ]
Pavanello, R. [1 ]
机构
[1] Univ Estadual Campinas, Dept Computat Mech, Campinas, SP, Brazil
[2] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5 1S6, Canada
基金
巴西圣保罗研究基金会;
关键词
Atomistic simulation; Elastic modulus; Graphene; Nanoribbons; Tensile strength; ELASTIC PROPERTIES; CARBON; HYDROCARBONS; ENERGY; SIZE;
D O I
10.1007/s10999-018-9403-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Experimental characterization of Graphene NanoRibbons (GNRs) is still an expensive task and computational simulations are therefore seen as a practical option to study the properties and mechanical response of GNRs. Design of GNR elements in various nanotechnology devices can be approached through molecular dynamics simulations. This study demonstrates that the atomic-scale finite element method (AFEM) based on the second generation REBO potential is an efficient and accurate alternative to the molecular dynamics simulation of GNRs. Special atomic finite elements are proposed to model graphene edges. Extensive comparisons are presented with MD solutions to establish the accuracy of AFEM. It is also shown that the Tersoff potential is not accurate for GNR modeling. The study demonstrates the influence of chirality and size on design parameters such as tensile strength and stiffness. Graphene is stronger and stiffer in the zigzag direction compared to the armchair direction. Armchair GNRs shows a minor dependence of tensile strength and elastic modulus on size whereas in the case of zigzag GNRs both modulus and strength show a significant size dependency. The size-dependency trend noted in the present study is different from the previously reported MD solutions for GNRs but qualitatively agrees with experimental results. Based on the present study, AFEM can be considered a highly efficient computational tool for analysis and design of GNRs.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 50 条
  • [21] Atomic-scale investigation of the mechanical characteristics and deformation behaviors of graphene-reinforced amorphous alloy
    Doan, Dinh-Quan
    Luu, Anh-Tung
    Tran, Quang-Hai
    Nguyen, Huu-Nghia
    Tran, Thi-Bao-Tien
    Tran, Xuan-Tien
    Physica B: Condensed Matter, 2025, 710
  • [22] Implantation and Atomic-Scale Investigation of Self-Interstitials in Graphene
    Lehtinen, Ossi
    Vats, Nilesh
    Algara-Siller, Gerardo
    Knyrim, Pia
    Kaiser, Ute
    NANO LETTERS, 2015, 15 (01) : 235 - 241
  • [23] Quantized edge modes in atomic-scale point contacts in graphene
    Kinikar, Amogh
    Sai, T. Phanindra
    Bhattacharyya, Semonti
    Agarwala, Adhip
    Biswas, Tathagata
    Sarker, Sanjoy K.
    Krishnamurthy, H. R.
    Jain, Manish
    Shenoy, Vijay B.
    Ghosh, Arindam
    NATURE NANOTECHNOLOGY, 2017, 12 (06) : 564 - +
  • [24] Multiscale finite element analyses on mechanical properties of graphene-reinforced composites
    Guo, Zhangxin
    Song, Lubin
    Chai, Gin Boay
    Li, Zhonggui
    Li, Yongcun
    Wang, Zhihua
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2019, 26 (20) : 1735 - 1742
  • [25] Simulated mechanical properties of finite-size graphene nanoribbons
    Aparicio, E.
    Tangarife, E.
    Munoz, F.
    Gonzalez, R., I
    Valencia, F. J.
    Careglio, C.
    Bringa, E. M.
    NANOTECHNOLOGY, 2021, 32 (04)
  • [26] QuantumATK: an integrated platform of electronic and atomic-scale modelling tools
    Smidstrup, Soren
    Markussen, Troels
    Vancraeyveld, Pieter
    Wellendorff, Jess
    Schneider, Julian
    Gunst, Tue
    Verstichel, Brecht
    Stradi, Daniele
    Khomyakov, Petr A.
    Vej-Hansen, Ulrik G.
    Lee, Maeng-Eun
    Chill, Samuel T.
    Rasmussen, Filip
    Penazzi, Gabriele
    Corsetti, Fabiano
    Ojanpera, Ari
    Jensen, Kristian
    Palsgaard, Mattias L. N.
    Martinez, Umberto
    Blom, Anders
    Brandbyge, Mads
    Stokbro, Kurt
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (01)
  • [27] Atomic-scale friction adjustment enabled by doping-induced modification in graphene nanosheet
    Zhang, Bozhao
    Zhang, Guangan
    Cheng, Ziwen
    Ma, Fei
    Lu, Zhibin
    APPLIED SURFACE SCIENCE, 2019, 483 : 742 - 749
  • [28] Finite element modelling of compressive mechanical behaviour of high and low density polymeric foams
    Alvarez, P.
    Mendizabal, A.
    Petite, M. M.
    Rodriguez-Perez, M. A.
    Echeverria, A.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2009, 40 (03) : 126 - 132
  • [29] Finite element buckling analysis of double-layered graphene nanoribbons
    Namnabat, Mohammad Sadegh
    Barzegar, Amin
    Javanbakht, Mahdi
    MATERIALS RESEARCH EXPRESS, 2019, 6 (05)
  • [30] FINITE ELEMENT MODELLING AND EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES AND MICRO STRUCTURAL STUDIES OF ALUMINA-GRAPHENE COMPOSITES
    Vandana, K. I. Vishnu
    Suman, K. N. S.
    NEW MATERIALS COMPOUNDS AND APPLICATIONS, 2021, 5 (03): : 156 - 170