Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2

被引:54
作者
Kim, Bong-Gyu [1 ]
Sung, Su Hyun [1 ]
Ahn, Joong-Hoon [1 ]
机构
[1] Konkuk Univ, Bio Mol Informat Ctr, Dept Biosci & Biotechnol, Seoul 143701, South Korea
基金
新加坡国家研究基金会;
关键词
Flavonoid glycones; Uridine diphosphate-dependent glycosyltransferase (UGT); N-acetylglucosamine; GLYCOSYLTRANSFERASES; GLUCOSYLTRANSFERASES; BIOSYNTHESIS;
D O I
10.1007/s00253-011-3747-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biotransformation of flavonoids using Escherichia coli harboring nucleotide sugar-dependent uridine diphosphate-dependent glycosyltransferases (UGTs) commonly results in the production of a glucose conjugate because most UGTs are specific for UDP-glucose. The Arabidopsis enzyme AtUGT78D2 prefers UDP-glucose as a sugar donor and quercetin as a sugar acceptor. However, in vitro, AtUGT78D2 could use UDP-N-acetylglucosamine as a sugar donor, and whole cell biotransformation of quercetin using E. coli harboring AtUGT78D2 produced quercetin 3-O-N-acetylglucosamine. In order to increase the production of quercetin 3-O-N-acetylglucosamine via biotransformation, two E. coli mutant strains deleted in phosphoglucomutase (pgm) or glucose-1-phosphate uridylyltransferase (galU) were created. The galU mutant produced up to threefold more quercetin 3-O-N-acetylglucosamine than wild type, resulting in the production of 380-mg/l quercetin 3-O-N-acetylglucosamine and a negligible amount of quercetin 3-O-glucoside. These results show that construction of bacterial strains for the synthesis of unnatural flavonoid glycosides is possible through rational selection of the nucleotide sugar-dependent glycosyltransferase and engineering of the nucleotide sugar metabolic pathway in the host strain.
引用
收藏
页码:2447 / 2453
页数:7
相关论文
共 19 条
  • [1] [Anonymous], 1989, Molecular Cloning: A Laboratory
  • [2] Glycosyltransferases: managers of small molecules
    Bowles, D
    Isayenkova, J
    Lim, EK
    Poppenberger, B
    [J]. CURRENT OPINION IN PLANT BIOLOGY, 2005, 8 (03) : 254 - 263
  • [3] EcoCyc: A comprehensive view of Escherichia coli biology
    Keseler, Ingrid M.
    Bonavides-Martinez, Cesar
    Collado-Vides, Julio
    Gama-Castro, Socorro
    Gunsalus, Robert P.
    Johnson, D. Aaron
    Krummenacker, Markus
    Nolan, Laura M.
    Paley, Suzanne
    Paulsen, Ian T.
    Peralta-Gil, Martin
    Santos-Zavaleta, Alberto
    Glennon Shearer, Alexander
    Karp, Peter D.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D464 - D470
  • [4] Kim Bong Gyu, 2005, Agricultural Chemistry and Biotechnology, V48, P113
  • [5] Bacterial Synthesis of a Flavonoid Deoxyaminosugar Conjugate in Escherichia coli Expressing a Glycosyltransferase of Arabidopsis thaliana
    Kim, Bong-Gyu
    Jung, Na Ri
    Joe, Eun Ji
    Hur, Hor-Gil
    Lim, Yoongho
    Chong, Youhoon
    Ahn, Joong-Hoon
    [J]. CHEMBIOCHEM, 2010, 11 (17) : 2389 - 2392
  • [6] Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus
    Ko, JH
    Kim, BG
    Ahn, JH
    [J]. FEMS MICROBIOLOGY LETTERS, 2006, 258 (02) : 263 - 268
  • [7] Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa
    Kramer, CM
    Prata, RTN
    Willits, MG
    De Luca, V
    Steffens, JC
    Graser, G
    [J]. PHYTOCHEMISTRY, 2003, 64 (06) : 1069 - 1076
  • [8] Lee YJ, 2007, B KOREAN CHEM SOC, V28, P365
  • [9] High-Yield Resveratrol Production in Engineered Escherichia coli
    Lim, Chin Giaw
    Fowler, Zachary L.
    Hueller, Thomas
    Schaffer, Steffen
    Koffas, Mattheos A. G.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (10) : 3451 - 3460
  • [10] Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides
    Lim, EK
    Ashford, DA
    Hou, BK
    Jackson, RG
    Bowles, DJ
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2004, 87 (05) : 623 - 631