Structure of planar integral self-affine tilings

被引:5
作者
Deng, Da-Wen [2 ]
Jiang, Tao [2 ]
Ngai, Sze-Man [1 ]
机构
[1] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-affine tile; tiling; Cantor set; neighbor; MSC (2010) Primary: 52C20; Secondary: 28A80; LATTICE TILINGS; TILES; CONNECTEDNESS; R(N);
D O I
10.1002/mana.201000061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a self-affine tile in R-2 generated by an expanding matrix A. M-2 (Z) and an integral consecutive collinear digit set D, Leung and Lau [Trans. Amer. Math. Soc. 359, 3337-3355 (2007).] provided a necessary and sufficient algebraic condition for it to be disklike. They also characterized the neighborhood structure of all disklike tiles in terms of the algebraic data A and D. In this paper, we completely characterize the neighborhood structure of those non-disklike tiles. While disklike tiles can only have either six or eight edge or vertex neighbors, non-disklike tiles have much richer neighborhood structure. In particular, other than a finite set, a Cantor set, or a set containing a nontrivial continuum, neighbors can intersect in a union of a Cantor set and a countable set. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:447 / 475
页数:29
相关论文
共 17 条
[1]   The topological structure of fractal tilings generated by quadratic number systems [J].
Akiyama, S ;
Thuswaldner, JM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (9-10) :1439-1485
[2]   On the connectedness of self-affine attractors [J].
Akiyama, S ;
Gjini, N .
ARCHIV DER MATHEMATIK, 2004, 82 (02) :153-163
[3]   Disk-like self-affine tiles in R2 [J].
Bandt, C ;
Wang, Y .
DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (04) :591-601
[4]   CLASSIFICATION OF SELF-AFFINE LATTICE TILINGS [J].
BANDT, C ;
GELBRITCH, G .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 :581-593
[5]  
Bandt C., 2009, Banach Center Publ., V84, P131
[6]   Vertices of self-similar tiles [J].
Deng, Da-Wen ;
Ngai, Sze-Man .
ILLINOIS JOURNAL OF MATHEMATICS, 2005, 49 (03) :857-872
[7]  
Duan, 2009, INTEGERS, V9, P227
[8]  
Duda J., 2007, ARXIV07103863V1MATH
[9]  
Duvall P., 1999, CONTEMP MATH-SINGAP, V246, P87
[10]   Expanding polynomials and connectedness of self-affine tiles [J].
Kirat, I ;
Lau, KS ;
Rao, H .
DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (02) :275-286