COUNTING PSEUDO-HOLOMORPHIC DISCS IN CALABI-YAU 3-FOLDS

被引:25
作者
Fukaya, Kenji [1 ]
机构
[1] Kyoto Univ, Dept Math, Sakyo Ku, Kyoto 6028502, Japan
关键词
Symplectic geometry; Lagrangian submanifold; Floer homology; Calabi-Yau manifold; A infinity algebra; superpotential; mirror symmetry; INVARIANTS; SYMMETRY;
D O I
10.2748/tmj/1325886287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define an invariant of a pair of a 6 dimensional symplectic manifold with vanishing 1st Chern class and its relatively spin Lagrangian submanifold with vanishing Maslov index. This invariant is a function on the set of the path connected components of bounding cochains (solutions of the A infinity version of the Maurer-Cartan equation of the filtered A infinity algebra associated to the Lagrangian submanifold). In the case when the Lagrangian submanifold is a rational homology sphere, it becomes a numerical invariant. This invariant depends on the choice of almost complex structures. The way how it depends on the almost complex structures is described by a wall crossing formula which involves a moduli space of pseudo-holomorphic spheres.
引用
收藏
页码:697 / 727
页数:31
相关论文
共 24 条
[1]  
AXELROD S, 1994, J DIFFER GEOM, V39, P173
[2]  
Bosch S., 1984, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V261, DOI DOI 10.1007/978-3-642-52229-1
[3]   Strong Homotopy Inner Product of an A∞-Algebra [J].
Cho, Cheol-Hyun .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[4]  
Cieliebak K., HOMOLOGICAL AL UNPUB
[5]   Arnold conjecture and Gromov-Witten invariant [J].
Fukaya, K ;
Ono, K .
TOPOLOGY, 1999, 38 (05) :933-1048
[6]  
Fukaya K, 2009, AMS/IP Stud. Adv. Math., V46
[7]  
Fukaya K., ARXIV09122646
[8]  
FUKAYA K, LAGRANGIAN INTERSECT
[9]   Cyclic symmetry and adic convergence in Lagrangian Floer theory [J].
Fukaya, Kenji .
KYOTO JOURNAL OF MATHEMATICS, 2010, 50 (03) :521-590
[10]   LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS, I [J].
Fukaya, Kenji ;
Oh, Yong-Geun ;
Ohta, Hiroshi ;
Ono, Kaoru .
DUKE MATHEMATICAL JOURNAL, 2010, 151 (01) :23-174