THE FIRST INTEGRAL METHOD FOR WU-ZHANG NONLINEAR SYSTEM WITH TIME-DEPENDENT COEFFICIENTS

被引:0
作者
Baleanu, Dumitru [1 ,2 ]
Kilic, Bulent [3 ]
Inc, Mustafa [3 ]
机构
[1] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Bucharest, Romania
[3] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2015年 / 16卷 / 02期
关键词
first integral method; Wu-Zhang system; analytical solutions; traveling wave solutions; PARTIAL-DIFFERENTIAL-EQUATIONS; TRAVELING-WAVE SOLUTIONS; TANH-FUNCTION METHOD; DE-VRIES EQUATION; EVOLUTION-EQUATIONS; PERIODIC-SOLUTIONS; SOLITONS; PLASMAS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The first integral method is used to construct traveling wave solutions of Wu-Zhang nonlinear dynamical system with time-dependent coefficients. We obtained different types of exact solutions by using two types of variable transformations. The method is an effective tool to construct the different types.of exact solutions of nonlinear partial differential equations having real world applications.
引用
收藏
页码:160 / 167
页数:8
相关论文
共 29 条
  • [1] Abazari R, 2014, ROM REP PHYS, V66, P286
  • [2] The first integral method for modified Benjamin-Bona-Mahony equation
    Abbasbandy, S.
    Shirzadi, A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (07) : 1759 - 1764
  • [3] Ahmed BS, 2013, P ROMANIAN ACAD A, V14, P281
  • [4] Analytic treatment of nonlinear evolution equations using first integral method
    Bekir, Ahmet
    Unsal, Omer
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (01): : 3 - 17
  • [5] Bourbaki N., 1972, Elements of mathematics: Commutative algebra
  • [6] Ding T.R., 1996, Ordinary Differential Equations
  • [7] Doha EH, 2014, ROM J PHYS, V59, P408
  • [8] Drazin PG., 1989, SOLITONS INTRO, DOI [10.1017/CBO9781139172059, DOI 10.1017/CBO9781139172059]
  • [9] The first-integral method to study the Burgers-Korteweg-de Vries equation
    Feng, ZS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (02): : 343 - 349
  • [10] New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations
    Fu, ZT
    Liu, SK
    Liu, SD
    Zhao, Q
    [J]. PHYSICS LETTERS A, 2001, 290 (1-2) : 72 - 76