Circulating Tumor Cell Identification Based on Deep Learning

被引:23
作者
Guo, Zhifeng [1 ]
Lin, Xiaoxi [1 ]
Hui, Yan [1 ]
Wang, Jingchun [1 ]
Zhang, Qiuli [1 ]
Kong, Fanlong [1 ]
机构
[1] Chifeng Municipal Hosp, Dept Oncol, Chifeng, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2022年 / 12卷
关键词
circulating tumor cells; detection; count; convolutional neural network; transfer learning; PREDICTION; ENRICHMENT; RELEVANCE; CARCINOMA; FREQUENCY; OPENCV;
D O I
10.3389/fonc.2022.843879
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
As a major reason for tumor metastasis, circulating tumor cell (CTC) is one of the critical biomarkers for cancer diagnosis and prognosis. On the one hand, CTC count is closely related to the prognosis of tumor patients; on the other hand, as a simple blood test with the advantages of safety, low cost and repeatability, CTC test has an important reference value in determining clinical results and studying the mechanism of drug resistance. However, the determination of CTC usually requires a big effort from pathologist and is also error-prone due to inexperience and fatigue. In this study, we developed a novel convolutional neural network (CNN) method to automatically detect CTCs in patients' peripheral blood based on immunofluorescence in situ hybridization (imFISH) images. We collected the peripheral blood of 776 patients from Chifeng Municipal Hospital in China, and then used Cyttel to delete leukocytes and enrich CTCs. CTCs were identified by imFISH with CD45+, DAPI+ immunofluorescence staining and chromosome 8 centromeric probe (CEP8+). The sensitivity and specificity based on traditional CNN prediction were 95.3% and 91.7% respectively, and the sensitivity and specificity based on transfer learning were 97.2% and 94.0% respectively. The traditional CNN model and transfer learning method introduced in this paper can detect CTCs with high sensitivity, which has a certain clinical reference value for judging prognosis and diagnosing metastasis.
引用
收藏
页数:10
相关论文
共 58 条
  • [1] Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
    Anthimopoulos, Marios
    Christodoulidis, Stergios
    Ebner, Lukas
    Christe, Andreas
    Mougiakakou, Stavroula
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1207 - 1216
  • [2] Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time?
    Asante, Du-Bois
    Calapre, Leslie
    Ziman, Melanie
    Meniawy, Tarek M.
    Gray, Elin S.
    [J]. CANCER LETTERS, 2020, 468 : 59 - 71
  • [3] Banys-Paluchowski M, 2015, GEBURTSH FRAUENHEILK, V75, P232
  • [4] Bradski G, 2000, DR DOBBS J, V25, P120
  • [5] Immuno-Fluorescence In Situ Hybridization Index Predicts Survival in Patients With Diffuse Large B-Cell Lymphoma Treated With R-CHOP: A GELA Study
    Copie-Bergman, Christiane
    Gaulard, Philippe
    Leroy, Karen
    Briere, Josette
    Baia, Maryse
    Jais, Jean-Philippe
    Salles, Gilles A.
    Berger, Francoise
    Haioun, Corinne
    Tilly, Herve
    Emile, Jean-Francois
    Banham, Alison H.
    Mounier, Nicolas
    Gisselbrecht, Christian
    Feugier, Pierre
    Coiffier, Bertrand
    Molina, Thierry J.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2009, 27 (33) : 5573 - 5579
  • [6] The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): International expert consensus paper
    Cristofanilli, Massimo
    Pierga, Jean-Yves
    Reuben, James
    Rademaker, Alfred
    Davis, Andrew A.
    Peeters, Dieter J.
    Fehm, Tanja
    Nole, Franco
    Gisbert-Criado, Rafael
    Mavroudis, Dimitrios
    Grisanti, Salvatore
    Giuliano, Mario
    Garcia-Saenz, Jose A.
    Stebbing, Justin
    Caldas, Carlos
    Gazzaniga, Paola
    Manso, Luis
    Zamarchi, Rita
    de lascoiti, Angela Fernandez
    de Mattos-Arruda, Leticia
    Ignatiadis, Michail
    Cabel, Luc
    van Laere, Steven J.
    Meier-Stiegen, Franziska
    Sandri, Maria-Teresa
    Vidal-Martinez, Jose
    Politaki, Eleni
    Consoli, Francesca
    Generali, Daniele
    Cappelletti, Maria Rosa
    Diaz-Rubio, Eduardo
    Krell, Jonathan
    Dawson, Sarah-Jane
    Raimondi, Cristina
    Rutten, Annemie
    Janni, Wolfgang
    Munzone, Elisabetta
    Caranana, Vicente
    Agelaki, Sofia
    Almici, Camillo
    Dirix, Luc
    Solomayer, Erich-Franz
    Zorzino, Laura
    Darrigues, Lauren
    Reis-Filho, Jorge S.
    Gerratana, Lorenzo
    Michiels, Stefan
    Bidard, Francois-Clement
    Pantel, Klaus
    [J]. CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2019, 134 : 39 - 45
  • [7] Circulating and disseminated tumor cells: harbingers or initiators of metastasis?
    Dasgupta, Arko
    Lim, Andrea R.
    Ghajar, Cyrus M.
    [J]. MOLECULAR ONCOLOGY, 2017, 11 (01) : 40 - 61
  • [8] IJ-OpenCV: Combining ImageJ and OpenCV for processing images in biomedicine
    Dominguez, Cesar
    Heras, Jonathan
    Pascual, Vico
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 84 : 189 - 194
  • [9] Detection of Circulating Tumor Cell Molecular Subtype in Pulmonary Vein Predicting Prognosis of Stage I-III Non-small Cell Lung Cancer Patients
    Dong, Jingsi
    Zhu, Daxing
    Tang, Xiaojun
    Qiu, Xiaoming
    Lu, Dan
    Li, Bingjie
    Lin, Dan
    Zhou, Qinghua
    [J]. FRONTIERS IN ONCOLOGY, 2019, 9
  • [10] Machine Learning for Medical Imaging1
    Erickson, Bradley J.
    Korfiatis, Panagiotis
    Akkus, Zeynettin
    Kline, Timothy L.
    [J]. RADIOGRAPHICS, 2017, 37 (02) : 505 - 515