A combined BDF-semismooth Newton approach for time-dependent Bingham flow

被引:42
作者
De Los Reyes, J. C. [1 ]
Andrade, S. Gonzalez [2 ]
机构
[1] Univ Berlin, Res Grp Optimizat, Ecuador & Inst Math, Escuela Politecn Nacl Quito,Dept Matemat, Berlin, Germany
[2] Graz Univ, Res Grp Optimizat, Ecuador & Inst Math & Wissensch Rechnen, Dept Matemat,Escuela Politecn Nacl Quito, Graz, Austria
基金
奥地利科学基金会;
关键词
backward differentiation methods; Bingham fluids; parabolic variational inequalities; semismooth Newton methods; Tikhonov regularization; FINITE-ELEMENT-METHOD; FLUID-FLOW; NUMERICAL-SIMULATION;
D O I
10.1002/num.20658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the numerical simulation of time-dependent convective Bingham flow in cavities. Motivated by a primal-dual regularization of the stationary model, a family of regularized time-dependent problems is introduced. Well posedness of the regularized problems is proved, and convergence of the regularized solutions to a solution of the original multiplier system is verified. For the numerical solution of each regularized multiplier system, a fully discrete approach is studied. A stable finite element approximation in space together with a second-order backward differentiation formula for the time discretization are proposed. The discretization scheme yields a system of Newton differentiable nonlinear equations in each time step, for which a semismooth Newton algorithm is used. We present two numerical experiments to verify the main properties of the proposed approach. (c) 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011
引用
收藏
页码:834 / 860
页数:27
相关论文
共 28 条
[1]   Matlab implementation of the finite element method in elasticity [J].
Alberty, J ;
Carstensen, C ;
Funken, SA ;
Klose, R .
COMPUTING, 2002, 69 (03) :239-263
[2]  
BAKER GA, 1982, MATH COMPUT, V39, P339, DOI 10.1090/S0025-5718-1982-0669634-0
[3]   An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations [J].
Bochev, P ;
Gunzburger, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) :1189-1207
[4]   Yield Stress Fluids Slowly Yield to Analysis [J].
Bonn, Daniel ;
Denn, Morton M. .
SCIENCE, 2009, 324 (5933) :1401-1402
[5]  
Brenner S. C., 2002, TEXTS APPL MATH
[6]   Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods [J].
Carlos De los Reyes, Juan ;
Gonzalez Andrade, Sergio .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (01) :11-32
[7]  
Coddington EA, 1955, THEORY DIFFERENTIAL
[8]   PATH FOLLOWING METHODS FOR STEADY LAMINAR BINGHAM FLOW IN CYLINDRICAL PIPES [J].
De Los Reyes, Juan Carlos ;
Gonzalez, Sergio .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (01) :81-117
[9]   On the numerical simulation of Bingham visco-plastic flow: Old and new results [J].
Dean, Edward J. ;
Glowinski, Roland ;
Guidoboni, Giovanna .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2007, 142 (1-3) :36-62
[10]  
Duvaut G., 1976, INEQUALITIES MECH PH, Vfirst, DOI [10.1007/978-3-642-66165-5, DOI 10.1007/978-3-642-66165-5]