Calbindin-D28K prevents drug-induced dopaminergic neuronal death by inhibiting caspase and calpain activity

被引:49
作者
Choi, Won-Seok
Lee, Eunhee
Lim, Junghyun
Oh, Young J. [1 ]
机构
[1] Yonsei Univ, Dept Biol, Coll Sci, Seoul 120749, South Korea
关键词
calbindin-D28K; MPP+; staurosporine; calcium; caspase; neuronal death;
D O I
10.1016/j.bbrc.2008.04.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Calbindin-D28K protects against apoptotic and necrotic cell death; these effects have been attributed to its ability to buffer calcium. In this study, we investigated the mechanisms underlying the neuroprotective effects of calbindin-D28K in staurosporine (STS)-induced apoptosis and 1-methyl-4-phenylpyridinium (MPP+)-induced necrosis. Treatment of the dopaminergic neuronal cell line MN9D with STS or MPP+ induced cell death that was associated with increased levels of free intracellular calcium. However, only MPP+-induced death was inhibited by co-treatment of the cells with a calcium chelator or a sodium/calcium antiporter inhibitor. Overexpression of calbindin-D28K prevented MPP+-induced MN9D cell death, which occurs in the absence of any detectable caspase activation. These pro-survival effects of calbinclinD28K were associated with the inhibition of calcium-mediated calpain activation, as determined by processing of Bax. Overexpression of calbindin-D28K also blocked STS-induced MN9D death. However, this effect was accompanied by the inhibition of capase-3 cleavage, poly(ADP-ribose)polymerase cleavage, and caspase activity. These findings suggest that calbindin-D28K protects against both types of cell death by inhibiting caspase- or calcium-mediated death signaling pathway. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:127 / 131
页数:5
相关论文
共 31 条
[1]   CALCIUM-BINDING PROTEINS IN THE NERVOUS-SYSTEM [J].
BAIMBRIDGE, KG ;
CELIO, MR ;
ROGERS, JH .
TRENDS IN NEUROSCIENCES, 1992, 15 (08) :303-308
[2]   Calbindin-D28k is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity [J].
Bellido, T ;
Huening, M ;
Raval-Pandya, M ;
Manolagas, SC ;
Christakos, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26328-26332
[3]   Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons [J].
Bilsland, J ;
Roy, S ;
Xanthoudakis, S ;
Nicholson, DW ;
Han, YX ;
Grimm, E ;
Hefti, F ;
Harper, SJ .
JOURNAL OF NEUROSCIENCE, 2002, 22 (07) :2637-2649
[4]   GROWTH OF A RAT NEUROBLASTOMA CELL LINE IN SERUM-FREE SUPPLEMENTED MEDIUM [J].
BOTTENSTEIN, JE ;
SATO, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (01) :514-517
[5]   CALBINDIN-D-28K AND PARVALBUMIN IN THE RAT NERVOUS-SYSTEM [J].
CELIO, MR .
NEUROSCIENCE, 1990, 35 (02) :375-475
[6]   IMMORTALIZATION OF EMBRYONIC MESENCEPHALIC DOPAMINERGIC-NEURONS BY SOMATIC-CELL FUSION [J].
CHOI, HK ;
WON, LA ;
KONTUR, PJ ;
HAMMOND, DN ;
FOX, AP ;
WAINER, BH ;
HOFFMANN, PC ;
HELLER, A .
BRAIN RESEARCH, 1991, 552 (01) :67-76
[7]  
Choi WS, 1999, J NEUROSCI RES, V57, P86, DOI 10.1002/(SICI)1097-4547(19990701)57:1<86::AID-JNR9>3.3.CO
[8]  
2-5
[9]   Overexpression of Calbindin-D28K induces neurite outgrowth in dopaminergic neuronal cells via activation of p38 MAPK [J].
Choi, WS ;
Chun, SY ;
Markelonis, GJ ;
Oh, TH ;
Oh, YJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 287 (03) :656-661
[10]   Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2 [J].
Choi, WS ;
Lee, EH ;
Chung, CW ;
Jung, YK ;
Jin, BK ;
Kim, SU ;
Oh, TH ;
Saido, TC ;
Oh, YJ .
JOURNAL OF NEUROCHEMISTRY, 2001, 77 (06) :1531-1541