On a conjecture of Schaffer concerning the equation 1k + ... + xk = yn

被引:15
作者
Hajdu, L. [1 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
关键词
Schaffer's conjecture; Power sums; Powers; Polynomial-exponential congruences; PERFECT POWERS; VALUES; SUMS;
D O I
10.1016/j.jnt.2015.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Schaffer's conjecture concerning the solutions of the equation in the title under certain assumptions on x, letting the other variables k, n, y be completely free. We also provide upper bounds for n under more moderate conditions. Finally, we give all solutions of the equation in the title for some concrete values of x. Our results rely on assertions describing the precise exponents of 2 and 3 appearing in the prime factorization of S-k(x) and on the explicit solution of polynomial-exponential congruences. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 22 条
[1]   On the Diophantine equation 1k+2k +...+ xk = yn [J].
Bennett, MA ;
Gyory, K ;
Pintér, A .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1417-1431
[2]   Perfect powers with few binary digits and related Diophantine problems, II [J].
Bennett, Michael A. ;
Bugeaud, Yann ;
Mignotte, Maurice .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 :525-540
[3]   FINITENESS OF ODD PERFECT POWERS WITH FOUR NONZERO BINARY DIGITS [J].
Corvaja, Pietro ;
Zannier, Umberto .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (02) :715-731
[4]  
Grau J.M., 2013, ARXIV13097941V4MATHN
[5]  
Grau J.M., 2013, ARXIV13042678V1MATHN
[6]   Equal values of standard counting polynomials [J].
Gyoery, Kalman ;
Kovacs, Tunde ;
Peter, Gyoengyver ;
Pinter, Akos .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 84 (1-2) :259-277
[7]  
Györy K, 2003, PUBL MATH-DEBRECEN, V62, P403
[8]  
Gyory K., 1980, ACTA ARITH, V37, P234
[9]   A computational approach for solving y2=1k+2k+•••+xk [J].
Jacobson, MJ ;
Pintér, A ;
Walsh, PG .
MATHEMATICS OF COMPUTATION, 2003, 72 (244) :2099-2110
[10]   On stronger conjectures that imply the Erdos-Moser conjecture [J].
Kellner, B. C. .
JOURNAL OF NUMBER THEORY, 2011, 131 (06) :1054-1061