Thermoelectric voltage at a nanometer-scale heated tip point contact

被引:21
作者
Fletcher, Patrick C. [1 ]
Lee, Byeonghee [1 ]
King, William P. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL USA
关键词
FORCE MICROSCOPE CANTILEVERS; SCANNING THERMAL MICROSCOPY; DATA-STORAGE; PROBE MICROSCOPY; NANOSCALE; THERMOCOUPLES; TEMPERATURE; MECHANISMS; SENSORS; FILMS;
D O I
10.1088/0957-4484/23/3/035401
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report thermoelectric voltage measurements between the platinum-coated tip of a heated atomic force microscope (AFM) cantilever and a gold-coated substrate. The cantilevers have an integrated heater-thermometer element made from doped single crystal silicon, and a platinum tip. The voltage can be measured at the tip, independent from the cantilever heating. We used the thermocouple junction between the platinum tip and the gold substrate to measure thermoelectric voltage during heating. Experiments used either sample-side or tip-side heating, over the temperature range 25-275 degrees C. The tip-substrate contact is similar to 4 nm in diameter and its average measured Seebeck coefficient is 3.4 mu V K-1. The thermoelectric voltage is used to determine tip-substrate interface temperature when the substrate is either glass or quartz. When the non-dimensional cantilever heater temperature is 1, the tip-substrate interface temperature is 0.593 on glass and 0.125 on quartz. Thermal contact resistance between the tip and the substrate heavily influences the tip-substrate interface temperature. Measurements agree well with modeling when the tip-substrate interface contact resistance is 10(8) K W-1.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Micromachined piezoresistive cantilever array with integrated resistive microheater for calorimetry and mass detection [J].
Abedinov, N ;
Grabiec, P ;
Gotszalk, T ;
Ivanov, T ;
Voigt, J ;
Rangelow, IW .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2001, 19 (06) :2884-2888
[2]   New fabrication process for monolithic probes with entegrated heaters for nanothermal machining [J].
Chiou, CH ;
Chang, SJ ;
Lee, GB ;
Lee, HH .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (1A) :208-214
[3]   Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage [J].
Chui, BW ;
Stowe, TD ;
Ju, YS ;
Goodson, KE ;
Kenny, TW ;
Mamin, HJ ;
Terris, BD ;
Ried, RP ;
Rugar, D .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1998, 7 (01) :69-78
[4]   Nanoscale Thermal AFM of Polymers: Transient Heat Flow Effects [J].
Duvigneau, Joost ;
Schonherr, Holger ;
Vancso, G. Julius .
ACS NANO, 2010, 4 (11) :6932-6940
[5]   Electrothermal Atomic-Force Microscope Cantilever With Integrated Heater and n-p-n Back-to-Back Diodes [J].
Fletcher, Patrick C. ;
Bhatia, Bikramjit S. ;
Wu, Yan ;
Shannon, Mark A. ;
King, William P. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2011, 20 (03) :644-653
[6]   A piezo-thermal probe for thermomechanical analysis [J].
Gaitas, Angelo ;
Gianchandani, Sachi ;
Zhu, Weibin .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (05)
[7]   Thermal conductance of metal-metal interfaces [J].
Gundrum, BC ;
Cahill, DG ;
Averback, RS .
PHYSICAL REVIEW B, 2005, 72 (24)
[8]  
Hertz H., 1882, J. reine und angewandte Mathematik, V92, P156
[9]   Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe [J].
Jesse, S. ;
Nikiforov, M. P. ;
Germinario, L. T. ;
Kalinin, S. V. .
APPLIED PHYSICS LETTERS, 2008, 93 (07)
[10]  
Jing Z, 2008, NANOTECHNOLOGY, V19