Modeling spatial landslide susceptibility in volcanic terrains through continuous neighborhood spatial analysis and multiple logistic regression in La Cienega watershed, Nevado de Toluca, Mexico

被引:4
作者
Castro-Miguel, Rutilio [1 ]
Legorreta-Paulin, Gabriel [2 ]
Bonifaz-Alfonzo, Roberto [3 ]
Fernando Aceves-Quesada, Jose [2 ]
Angel Castillo-Santiago, Miguel [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Escuela Nacl Ciencias Tierra, Ciudad Univ, Ciudad De Mexico 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Geog, Ciudad Univ, Ciudad De Mexico 04510, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Geofis, Ciudad Univ, Ciudad De Mexico 04510, Mexico
[4] Colegio Frontera Sur, Dept Observac & Estudio Tierra Atmosfera & Oceano, Carretera Panamer & Perifer Sur S-N, San Cristobal de las Casa 29290, Chiapas, Mexico
关键词
Spatial models; Neighborhood analysis; Multiple logistic regression; Landslides; ORIZABA VOLCANO; FREQUENCY; FLANK; PICO;
D O I
10.1007/s11069-022-05323-w
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Little study has been done on the effect of the pixel neighborhood information when modeling landslide susceptibility using multiple logistic regression (MLR). The present research uses in situ and neighborhood cartographic information to evaluate how the size of the neighboring area to be sampled affects the precision and accuracy of the MLR landslide susceptibility model. Two landslide susceptibility models are used: MLR-in situ, calibrated and validated by using variables that are collected at the site of the sampling point, and MLR in combination with continuous neighborhood spatial analysis (CNSA) to incorporate a search radius to extract pixel values for each cartographic variable based on a distance ratio. La Cienega watershed on the eastern flank of the volcano Nevado de Toluca is selected as a study area. Its climate, topography, geomorphology, and geology predispose it to episodic landslides. The resulting susceptibility maps are validated in terms of the area under the curve (AUC) of the receiver operating characteristic (ROC), and they are compared with an inventory map in a contingency table; the MLR-CNSA model yields the better spatial prediction and representation of landslide susceptibility. The AUC evaluation indicates a predictive capability for the MLR-CNSA model of 0.969.
引用
收藏
页码:767 / 788
页数:22
相关论文
共 65 条
  • [1] Abdulah L, 2015, 10 WORLD BAMB C KOR, P1
  • [2] Aceves Quesada Fernando, 2014, Bol. Soc. Geol. Mex, V66, P329
  • [3] Gravitational processes on the eastern flank of the Nevado de Toluca, Mexico
    Aceves Quesada, Jose Fernando
    Legorreta Paulin, Gabriel
    Yarummy, Alvarez-Ruiz
    [J]. ZEITSCHRIFT FUR GEOMORPHOLOGIE, 2014, 58 (02): : 185 - 200
  • [4] Aguilar-Barojas S., 2005, Salud en Tabasco, V11, P333
  • [5] Multitemporal land-cover classification of Mexico using Landsat MSS imagery
    Alvarez, R
    Bonifaz, R
    Lunetta, RS
    García, C
    Gómez, G
    Castro, R
    Bernal, A
    Cabrera, AL
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (12) : 2501 - 2514
  • [6] Alvarez Y, 2015, THESIS U NACL AUTONO
  • [7] Aparicio AT., 2014, INVEST GEOGR-MEX
  • [8] The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan
    Ayalew, L
    Yamagishi, H
    [J]. GEOMORPHOLOGY, 2005, 65 (1-2) : 15 - 31
  • [9] Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico
    Capra, L
    Macías, JL
    [J]. JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2000, 102 (1-2) : 149 - 167
  • [10] Volcanic hazard zonation of the Nevado de Toluca volcano, Mexico
    Capra, L.
    Norini, G.
    Groppelli, G.
    Macias, J. L.
    Arce, J. L.
    [J]. JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2008, 176 (04) : 469 - 484