Matching Bayesian and frequentist coverage probabilities when using an approximate data covariance matrix

被引:50
作者
Percival, Will J. [1 ,2 ,3 ]
Friedrich, Oliver [4 ,5 ]
Sellentin, Elena [6 ,7 ]
Heavens, Alan [8 ]
机构
[1] Univ Waterloo, Waterloo Ctr Astrophys, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
[4] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England
[5] Univ Cambridge, Churchill Coll, Cambridge CB3 0DS, England
[6] Leiden Univ, Math Inst, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
[7] Leiden Univ, Leiden Observ, Oort Gebouw, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
[8] Imperial Coll London, Imperial Ctr Inference & Cosmol ICIC, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
关键词
methods: data analysis; methods: statistical; cosmology: observation; OBJECTIVE PRIORS; PEAK STATISTICS; CONSTRAINTS; COSMOLOGY; PRECISION; INFERENCE;
D O I
10.1093/mnras/stab3540
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Observational astrophysics consists of making inferences about the Universe by comparing data and models. The credible intervals placed on model parameters are often as important as the maximum a posteriori probability values, as the intervals indicate concordance or discordance between models and with measurements from other data. Intermediate statistics (e.g. the power spectrum) are usually measured and inferences are made by fitting models to these rather than the raw data, assuming that the likelihood for these statistics has multivariate Gaussian form. The covariance matrix used to calculate the likelihood is often estimated from simulations, such that it is itself a random variable. This is a standard problem in Bayesian statistics, which requires a prior to be placed on the true model parameters and covariance matrix, influencing the joint posterior distribution. As an alternative to the commonly used independence Jeffreys prior, we introduce a prior that leads to a posterior that has approximately frequentist matching coverage. This is achieved by matching the covariance of the posterior to that of the distribution of true values of the parameters around the maximum likelihood values in repeated trials, under certain assumptions. Using this prior, credible intervals derived from a Bayesian analysis can be interpreted approximately as confidence intervals, containing the truth a certain proportion of the time for repeated trials. Linking frequentist and Bayesian approaches that have previously appeared in the astronomical literature, this offers a consistent and conservative approach for credible intervals quoted on model parameters for problems where the covariance matrix is itself an estimate.
引用
收藏
页码:3207 / 3221
页数:15
相关论文
共 37 条
[1]   Relativistic distortions in the large-scale clustering of SDSS-III BOSS CMASS galaxies [J].
Alam, Shadab ;
Zhu, Hongyu ;
Croft, Rupert A. C. ;
Ho, Shirley ;
Giusarma, Elena ;
Schneider, Donald P. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (03) :2822-2833
[2]   Objective priors for the bivariate normal model [J].
Berger, James O. ;
Sun, Dongchu .
ANNALS OF STATISTICS, 2008, 36 (02) :963-982
[3]   Studying galaxy troughs and ridges using weak gravitational lensing with the Kilo-Degree Survey [J].
Brouwer, Margot M. ;
Demchenko, Vasiliy ;
Harnois-Deraps, Joachim ;
Bilicki, Maciej ;
Heymans, Catherine ;
Hoekstra, Henk ;
Kuijken, Konrad ;
Alpaslan, Mehmet ;
Brough, Sarah ;
Cai, Yan-Chuan ;
Costa-Duarte, Marcus V. ;
Dvornik, Andrej ;
Erben, Thomas ;
Hildebrandt, Hendrik ;
Holwerda, Benne W. ;
Schneider, Peter ;
Sifon, Cristobal ;
van Uitert, Edo .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (04) :5189-5209
[4]   REFERENCE PRIORS FOR THE ORBIT IN A GROUP MODEL [J].
CHANG, T ;
EAVES, D .
ANNALS OF STATISTICS, 1990, 18 (04) :1595-1614
[5]  
DES Collaboration, 2021, ARXIV210513549 DES C
[6]   The effect of covariance estimator error on cosmological parameter constraints [J].
Dodelson, Scott ;
Schneider, Michael D. .
PHYSICAL REVIEW D, 2013, 88 (06)
[7]   Dark Energy Survey year 3 results: covariance modelling and its impact on parameter estimation and quality of fit [J].
Friedrich, O. ;
Andrade-Oliveira, F. ;
Camacho, H. ;
Alves, O. ;
Rosenfeld, R. ;
Sanchez, J. ;
Fang, X. ;
Eifler, T. F. ;
Krause, E. ;
Chang, C. ;
Omori, Y. ;
Amon, A. ;
Baxter, E. ;
Elvin-Poole, J. ;
Huterer, D. ;
Porredon, A. ;
Prat, J. ;
Terra, V ;
Troja, A. ;
Alarcon, A. ;
Bechtol, K. ;
Bernstein, G. M. ;
Buchs, R. ;
Campos, A. ;
Rosell, A. Carnero ;
Kind, M. Carrasco ;
Cawthon, R. ;
Choi, A. ;
Cordero, J. ;
Crocce, M. ;
Davis, C. ;
DeRose, J. ;
Diehl, H. T. ;
Dodelson, S. ;
Doux, C. ;
Drlica-Wagner, A. ;
Elsner, F. ;
Everett, S. ;
Fosalba, P. ;
Gatti, M. ;
Giannini, G. ;
Gruen, D. ;
Gruendl, R. A. ;
Harrison, I ;
Hartley, W. G. ;
Jain, B. ;
Jarvis, M. ;
MacCrann, N. ;
McCullough, J. ;
Muir, J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 508 (03) :3125-3165
[8]   Performance of internal covariance estimators for cosmic shear correlation functions [J].
Friedrich, O. ;
Seitz, S. ;
Eifler, T. F. ;
Gruen, D. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 456 (03) :2662-2680
[9]   Precision matrix expansion - efficient use of numerical simulations in estimating errors on cosmological parameters [J].
Friedrich, Oliver ;
Eifler, Tim .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 473 (03) :4150-4163
[10]  
GEISSER S, 1963, J ROY STAT SOC B, V25, P368