Atomic momentum distribution and Bose-Einstein condensation in liquid 4He under pressure

被引:21
|
作者
Glyde, H. R. [1 ]
Diallo, S. O. [2 ]
Azuah, R. T. [3 ,4 ]
Kirichek, O. [5 ]
Taylor, J. W. [5 ]
机构
[1] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[2] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA
[3] NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[4] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[5] Rutherford Appleton Lab, STFC, ISIS Spallat Neutron Source, Didcot OX11 0QX, Oxon, England
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 18期
关键词
INELASTIC NEUTRON-SCATTERING; KINETIC-ENERGY; SUPERFLUID TRANSITION; DENSITY-DEPENDENCE; HE-4; HELIUM; FRACTION; GAS; QUANTUM; SYSTEMS;
D O I
10.1103/PhysRevB.84.184506
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Neutron-scattering measurements of the dynamic structure factor, S(Q,omega), of liquid He-4 as a function of pressure at high-momentum transfer, (h) over barQ, are presented. At high (h) over barQ the dynamics of single atoms in the liquid is observed. From S(Q,omega) the atomic momentum distribution, n(k), the Bose-Einstein condensate fraction, n(0), and the final-state (FS) broadening function are obtained. The shape of n(k) differs from a classical, Maxwell-Boltzmann distribution with higher occupation of low-momentum states in the quantum liquid. The width of n(k) and the atomic kinetic energy, < K >, increase with pressure but the shape of n(k) remains approximately independent of pressure. The present observed and Monte Carlo (MC) calculations of < K > agree within error. The condensate fraction decreases from n(0) = 7.25% +/- 0.75% at saturated vapor pressure (p similar or equal to 0) to n(0) = 3.2% +/- 0.75% at pressure p = 24 bar, a density dependence that is again reproduced by MC calculations within observed error. The FS function is the contribution to S(Q,omega) arising from the interaction of the struck atom with its neighbors following the scattering. The FS function broadens with increasing pressure reflecting the increased importance of FS effects at higher pressure.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Bose-Einstein condensation of an atomic gas
    Dalibard, J
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P8): : 3 - 12
  • [42] Bose-Einstein condensation of atomic hydrogen
    Willmann, L
    APPLIED PHYSICS B-LASERS AND OPTICS, 1999, 69 (5-6): : 357 - 361
  • [43] Bose-Einstein condensation of atomic hydrogen
    Kleppner, D
    Greytak, TJ
    Killian, TC
    Fried, DG
    Willmann, L
    Landhuis, D
    Moss, SC
    BOSE-EINSTEIN CONDENSATION IN ATOMIC GASES, 1999, 140 : 177 - 199
  • [44] SEARCH FOR BOSE-EINSTEIN CONDENSATION IN SUPERFLUID HE-4
    MOOK, HA
    SCHERM, R
    WILKINSON, MK
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1972, 6 (06): : 2268 - +
  • [45] THEORY OF THE BOSE-EINSTEIN CONDENSATION IN SUPERFLUID HE-4
    VAKARCHUK, IA
    UKRAINSKII FIZICHESKII ZHURNAL, 1990, 35 (08): : 1261 - 1267
  • [46] Bose-Einstein Condensation of a Stochastic Liquid
    Mackowiak, Jan
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2017, 24 (02):
  • [47] BOSE-EINSTEIN CONDENSATION AND LIQUID HELIUM
    PENROSE, O
    ONSAGER, L
    PHYSICAL REVIEW, 1956, 104 (03): : 576 - 584
  • [48] Density profile of the atomic Bose-Einstein condensation
    Yi, XX
    Su, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (10): : 3497 - 3503
  • [49] Surface Bose-Einstein condensate:: clusters and free surface of 4He
    Galli, DE
    Reatto, L
    PHYSICA B, 2000, 284 : 152 - 153
  • [50] Is Bose-Einstein condensation of atomic cesium possible?
    Guery-Odelin, D
    Soding, J
    Desbiolles, P
    Dalibard, J
    EUROPHYSICS LETTERS, 1998, 44 (01): : 25 - 30