Estimation of Short-Term Online Taxi Travel Time Based on Neural Network

被引:7
作者
Fu, Liping [1 ]
Li, Jianbo [1 ]
Lv, Zhiqiang [1 ]
Li, Ying [1 ]
Lin, Qing [1 ]
机构
[1] Qingdao Univ Qingdao, Comp Sci & Technol, CN-266071 Qingdao, Peoples R China
来源
WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT II | 2020年 / 12385卷
基金
中国国家自然科学基金;
关键词
Travel time estimation; Spatial feature; Temporal characteristic; TCN;
D O I
10.1007/978-3-030-59019-2_3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Estimating the short-term online taxi travel time is an important content in urban planning and navigation forecasting systems. When estimating the taxi travel time, we need to take many factors, such as temporal correlation, spatial dependency, and external factors, into consideration. In this paper, we propose a model named DeepSTTE (Short-term Travel Time Estimation) to estimate the short-term online taxi travel time. Firstly, the model integrates external factors using the embedding method. Further, we leverage the classical convolution networks to obtain the spatial feature information of the original GPS trajectory, and use the temporal convolutional networks (TCN) to obtain the temporal characteristics. Finally, we estimate the online taxi travel time of the entire path by the auxiliary learning part. We perform lots of experiments with real datasets, showing that our model DeepSTTE reduces the errors and performs better than the current methods in estimating the travel time.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 17 条
[1]   Spatiotemporal Patterns in Large-Scale Traffic Speed Prediction [J].
Asif, Muhammad Tayyab ;
Dauwels, Justin ;
Goh, Chong Yang ;
Oran, Ali ;
Fathi, Esmail ;
Xu, Muye ;
Dhanya, Menoth Mohan ;
Mitrovic, Nikola ;
Jaillet, Patrick .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (02) :794-804
[2]  
Cho K., 2014, P SSST 8 8 WORKSH SY, P103
[3]  
Friedman J., 2001, ELEMENTS STAT LEARNI, V1, DOI [DOI 10.1007/978-0-387-21606-5, 10.1007/978-0-387-21606-5]
[4]  
Gal Y, 2016, ADV NEUR IN, V29
[5]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[6]  
Hull B., 2006, SENSYS, DOI DOI 10.1145/1182807.1182821
[7]   The PeMS algorithms for accurate, real-time estimates of g-factors and speeds from single-loop detectors [J].
Jia, ZF ;
Chen, C ;
Coifman, B ;
Varaiya, P .
2001 IEEE INTELLIGENT TRANSPORTATION SYSTEMS - PROCEEDINGS, 2001, :536-541
[8]  
Kingma DP, 2014, ADV NEUR IN, V27
[9]  
Luo W., 2013, SIGMOD, P713
[10]   Nei-TTE: Intelligent Traffic Time Estimation Based on Fine-Grained Time Derivation of Road Segments for Smart City [J].
Qiu, Jing ;
Du, Lei ;
Zhang, Dongwen ;
Su, Shen ;
Tian, Zhihong .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) :2659-2666