A Feynman-Kac-type formula for the deterministic and stochastic wave equations and other p.d.e.'s

被引:28
作者
Dalang, Robert C. [1 ]
Mueller, Carl [2 ]
Tribe, Roger [3 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[2] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[3] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1090/S0002-9947-08-04351-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a probabilistic representation for a wide class of linear deterministic p.d.e.'s with potential term, including the wave equation in spatial dimensions 1 to 3. Our representation applies to the heat equation, where it is related to the classical Feynman-Kac formula, as well as to the telegraph and beam equations. If the potential is a (random) spatially homogeneous Gaussian noise, then this formula leads to an expression for the moments of the solution.
引用
收藏
页码:4681 / 4703
页数:23
相关论文
共 22 条
[11]  
Fournier N, 2002, MATH COMPUT, V71, P583, DOI 10.1090/S0025-5718-01-01339-4
[12]  
HERSCH R, 1974, ROCKY MT J MATH, V4, P443
[13]  
Kac M., 1956, LECT PURE APPL SCI, V2, P497
[14]  
Kac M, 1974, ROCKY MOUNTAIN J MAT, V4, P497, DOI [10.1216/RMJ-1974-4-3-497, DOI 10.1216/RMJ-1974-4-3-497]
[15]  
Karatzas I., 1998, Brownian Motion and Stochastic Calculus, Vsecond
[16]  
LEVEQUE O, 2001, THESIS ECOLE POLYTEC
[17]  
Mueller C, 1997, ANN PROBAB, V25, P133
[18]   Asymptotic properties of the solutions to stochastic KPP equations [J].
Oksendal, B ;
Våge, G ;
Zhao, HZ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :1363-1381
[19]  
Schwartz L., 1966, Theorie des Distributions
[20]  
WALSH JB, 1986, LECT NOTES MATH, V1180, P265