On a common generalization of Shelah's 2-rank, dp-rank, and o-minimal dimension

被引:6
作者
Guingona, Vincent [1 ]
Hill, Cameron Donnay [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
关键词
op-dimension; op-rank; dp-rank; 2-rank; o-minimal; NIP THEORIES;
D O I
10.1016/j.apal.2014.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we build a dimension theory related to Shelah's 2-rank, dp-rank, and o-minimal dimension. We call this dimension op-dimension. We exhibit the notion of the n-multi-order property, generalizing the order property, and use this to create op-rank, which generalizes 2-rank. From this we build op-dimension. We show that op-dimension bounds dp-rank, that op-dimension is sub-additive, and op-dimension generalizes o-minimal dimension in o-minimal theories. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:502 / 525
页数:24
相关论文
共 16 条
[1]  
Adler H., 2007, PREPRINT
[2]  
[Anonymous], PREPRINT
[3]   Dp-Minimality: Basic Facts and Examples [J].
Dolich, Alfred ;
Goodrick, John ;
Lippel, David .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2011, 52 (03) :267-288
[4]  
Guingona V., CHARACTERIZING UNPUB
[5]   On Vapnik-Chervonenkis density over indiscernible sequences [J].
Guingona, Vincent ;
Hill, Cameron Donnay .
MATHEMATICAL LOGIC QUARTERLY, 2014, 60 (1-2) :59-65
[6]  
Hill C.D., 2012, PREPRINT
[7]  
Hodges Wilfrid, 1993, Model Theory, DOI DOI 10.1017/CBO9780511551574
[8]   ADDITIVITY OF THE DP-RANK [J].
Kaplan, Itay ;
Onshuus, Alf ;
Usvyatsov, Alexander .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (11) :5783-5804
[9]   Fraisse limits, Ramsey theory, and topological dynamics of automorphism groups [J].
Kechris, AS ;
Pestov, VG ;
Todorcevic, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (01) :106-189
[10]   THE NON-AXIOMATIZABILITY OF O-MINIMALITY [J].
Rennet, Alex .
JOURNAL OF SYMBOLIC LOGIC, 2014, 79 (01) :54-59