Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering

被引:117
作者
Farzadi, Arghavan [1 ]
Waran, Vicknes [2 ]
Solati-Hashjin, Mehran [1 ]
Rahman, Zainal Ariff Abdul [3 ]
Asadi, Mitra [1 ]
Abu Osman, Noor Azuan [1 ]
机构
[1] Univ Malaya, Fac Engn, Dept Biomed Engn, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Engn, Div Neurosurg, Kuala Lumpur 50603, Malaysia
[3] Canc Res Initiat Fdn CARIF, Oral Canc Res Team, Subang Jaya, Selangor, Malaysia
关键词
Additive manufacturing; 3D printing; Dimensional accuracy; Compressive strength; Delay in printing; ELASTIC PROPERTIES; HYDROXYAPATITE; SCAFFOLDS; PRINTABILITY; PARAMETERS; TITANIUM; PLASTER; POWDERS; DESIGN; SYSTEM;
D O I
10.1016/j.ceramint.2015.03.004
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recent advancements in computational design and additive manufacturing have enabled the fabrication of 3D prototypes with controlled architecture resembling the natural bone. Powder-based three-dimensional printing (3DP) is a versatile method for production of synthetic scaffolds using sequential layering process. The quality of 3D printed products by this method is controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The X-direction printed scaffolds with a pore size of 0.8 mm and a layer thickness of 0.1125 mm were subjected to the depowdering step. The effects of four layer printing delays of 50, 100, 300 and 500 ms on the physical and mechanical properties of printed scaffolds were investigated. The compressive strength, toughness and tangent modulus of samples printed with a delay of 300 ms were observed to be higher than other samples. Furthermore, the results of SEM and mu CT analyses showed that samples printed with a delay of 300 ms have higher dimensional accuracy and are significantly closer to CAD software based designs with predefined 0.8 mm macro-pore and 0.6 mm strut size. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:8320 / 8330
页数:11
相关论文
共 48 条
[1]  
[Anonymous], 2013, ISRN BIOMATER
[2]   3D printing of bone substitute implants using calcium phosphate and bioactive glasses [J].
Bergmann, Christian ;
Lindner, Markus ;
Zhang, Wen ;
Koczur, Karolina ;
Kirsten, Armin ;
Telle, Rainer ;
Fischer, Horst .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (12) :2563-2567
[3]   3-D printing: The new industrial revolution [J].
Berman, Barry .
BUSINESS HORIZONS, 2012, 55 (02) :155-162
[4]   Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response [J].
Bignon, A ;
Chouteau, J ;
Chevalier, J ;
Fantozzi, G ;
Carret, JP ;
Chavassieux, P ;
Boivin, G ;
Melin, M ;
Hartmann, D .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2003, 14 (12) :1089-1097
[5]   A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering [J].
Billiet, Thomas ;
Vandenhaute, Mieke ;
Schelfhout, Jorg ;
Van Vlierberghe, Sandra ;
Dubruel, Peter .
BIOMATERIALS, 2012, 33 (26) :6020-6041
[6]   New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes [J].
Butscher, A. ;
Bohner, M. ;
Doebelin, N. ;
Hofmann, S. ;
Mueller, R. .
ACTA BIOMATERIALIA, 2013, 9 (11) :9149-9158
[7]   Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering [J].
Butscher, A. ;
Bohner, M. ;
Doebelin, N. ;
Galea, L. ;
Loeffel, O. ;
Mueller, R. .
ACTA BIOMATERIALIA, 2013, 9 (02) :5369-5378
[8]   Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds [J].
Butscher, Andre ;
Bohner, Marc ;
Roth, Christian ;
Ernstberger, Annika ;
Heuberger, Roman ;
Doebelin, Nicola ;
von Rohr, Philipp Rudolf ;
Mueller, Ralph .
ACTA BIOMATERIALIA, 2012, 8 (01) :373-385
[9]   Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement [J].
Castilho, Miguel ;
Dias, Marta ;
Vorndran, Elke ;
Gbureck, Uwe ;
Fernandes, Paulo ;
Pires, Ines ;
Gouveia, Barbara ;
Armes, Henrique ;
Pires, Eduardo ;
Rodrigues, Jorge .
BIOFABRICATION, 2014, 6 (02)
[10]   Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects [J].
Castilho, Miguel ;
Moseke, Claus ;
Ewald, Andrea ;
Gbureck, Uwe ;
Groll, Juergen ;
Pires, Ines ;
Tessmar, Joerg ;
Vorndran, Elke .
BIOFABRICATION, 2014, 6 (01)