共 34 条
Modification on the Microstructure of Ultrananocrystalline Diamond Films for Enhancing Their Electron Field Emission Properties via a Two-Step Microwave Plasma Enhanced Chemical Vapor Deposition Process
被引:16
作者:
Cheng, Hsiu-Fung
[2
]
Horng, Chuang-Chi
[2
]
Chiang, Horng-Yi
[2
]
Chen, Huang-Chin
[1
]
Lin, I-Nan
[1
]
机构:
[1] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan
[2] Natl Taiwan Normal Univ, Dept Phys, Taipei 106, Taiwan
关键词:
NANO-DIAMOND;
GROWTH;
CARBON;
D O I:
10.1021/jp112131a
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The electron field emission (EFE) properties of microcrystalline diamond (MCD) films were markedly improved by using ultrananocrystalline diamond (UNCD) films as the nucleation layer. Thus formed MCD/UNCD composite films possess a low turn-on field ((E(0))(MCD/UNCD) = 10.3 V/mu m), which is even smaller than that for the underlying UNCD films ((E(0))(UNCD) = 14.7 V/mu m). However, the extent of the enhancement on EFE behavior of the MCD/UNCD films is strongly influenced by the characteristics of the UNCD nucleation layer. The improvement on EFE behavior of MCD/UNCD films is large when the UNCD nucleation layer was grown in H(2)-free Ar plasma (CH(4)/Ar/H(2) (0%) = 2/98/0) and is small when the UNCD layer was grown in H(2)-containing Ar plasma (CH(4)/Ar/H(2) (3%) = 2/95/3). Transmission electron microscopy (TEM) examinations reveal that, while both films contain large-grain and ultrasmall grain duplex microstructure, only the former contain nanographites, locating along the interface of large-grain and ultrasmall grain regions. Presumably, the nanographites form an interconnected path that improved the transport of electrons and markedly enhanced the EFE properties of the MCD/UNCD composite films.
引用
收藏
页码:13894 / 13900
页数:7
相关论文