Corrosion behaviour and in vitro/in vivo biocompatibility of surface-modified AZ31 alloy

被引:12
|
作者
Carboneras, M. [1 ]
Iglesias, C. [2 ]
Perez-Maceda, B. T. [3 ]
del Valle, J. A. [1 ]
Garcia-Alonso, M. C. [1 ]
Alobera, M. A. [1 ]
Clemente, C. [4 ]
Rubio, J. C. [2 ]
Escudero, M. L. [1 ]
Lozano, R. M. [3 ]
机构
[1] CSIC, CENIM, Madrid, Spain
[2] Hosp La Paz, Madrid, Spain
[3] CSIC, Ctr Invest Biol, Madrid, Spain
[4] Univ Alcala de Henares, Fac Med, Madrid, Spain
关键词
AZ31; Magnesium fluoride; Corrosion; Biocompatibility; In vitro/in vivo; MAGNESIUM; COATINGS;
D O I
10.3989/revmetalm.1065
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The present work evaluates the corrosion behaviour and the in vitro/in vivo biocompatibility of the AZ31 magnesium alloy, which fulfills the mechanical requirements of bone. The corrosion kinetic of as-received AZ31 alloy was not compatible with the cell growth. To improve its performance, the AZ31 alloy was surface modified by a chemical conversion treatment in hydrofluoric acid. The magnesium fluoride layer generated by the surface treatment of AZ31 alloy enhances its corrosion behaviour, allowing the in vitro growth of osteoblastic cells over the surface and the in vivo formation of a highly compact layer of new bone tissue. These results lead to consider the magnesium fluoride coating as necessary for potential use of the AZ31 alloy as biodegradable and absorbable implant for bone repair.
引用
收藏
页码:212 / 223
页数:12
相关论文
共 50 条
  • [21] Corrosion resistance and biocompatibility of polydopamine/hyaluronic acid composite coating on AZ31 magnesium alloy
    Zhou, Zhiwei
    Zheng, Bo
    Lang, Haiyang
    Qin, Aimiao
    Ou, Jun
    SURFACES AND INTERFACES, 2020, 20
  • [22] Bioinspired surface modification of AZ31 Mg alloy with cellulose-derivative HPMC: Enhancing corrosion protection with biocompatibility
    Ayaz, Zainab
    Gong, Yanli
    Jiang, Yehao
    Zhou, Lili
    Zhou, Yukun
    Liang, Wenlang
    Zhao, Ansha
    Jing, Fengjuan
    Akhavan, Behnam
    Leng, Y. X.
    SURFACE & COATINGS TECHNOLOGY, 2025, 496
  • [23] In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris
    Ling-Yu Li
    Bin Liu
    Rong-Chang Zeng
    Shuo-Qi Li
    Fen Zhang
    Yu-Hong Zou
    Hongwei George Jiang
    Xiao-Bo Chen
    Shao-Kang Guan
    Qing-Yun Liu
    Frontiers of Materials Science, 2018, 12 : 184 - 197
  • [24] Effect of polypyrrole coating modified by sodium fluoride and polyethylene glycol on corrosion behaviour of AZ31 magnesium alloy
    Saremi, Mohsen
    Mortazavi, Seyed H.
    MICRO & NANO LETTERS, 2016, 11 (12): : 866 - 869
  • [25] Stress corrosion cracking behaviour of a surface-modified magnesium alloy
    Srinivasan, P. Bala
    Blawert, C.
    Dietzel, W.
    Kainer, K. U.
    SCRIPTA MATERIALIA, 2008, 59 (01) : 43 - 46
  • [26] An ionic liquid surface treatment for corrosion protection of magnesium alloy AZ31
    Forsyth, Maria
    Howlett, Patrick C.
    Tan, Seal K.
    MacFarlane, Douglas R.
    Birbilis, Nick
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (11) : B52 - B55
  • [27] Hydrogen behaviour during stress-corrosion cracking of an AZ31 magnesium alloy
    Kuramoto, S.
    Araki, I.
    Kanno, M.
    Keikinzoku/Journal of Japan Institute of Light Metals, 2001, 51 (08): : 397 - 402
  • [28] CORROSION BEHAVIOUR OF AZ31 MAGNESIUM ALLOY IN SALINE CONTAINING GLUCOSE AT DIFFERENT CONCENTRATIONS
    Doskocil, Leos
    Somanova, Pavlina
    Wasserbauer, Jaromir
    31ST INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, METAL 2022, 2022, : 549 - 554
  • [29] Dynamic mechanical behaviour of AZ31 magnesium alloy
    常旭青
    马铁华
    杨勇彪
    JournalofMeasurementScienceandInstrumentation, 2013, 4 (02) : 194 - 198
  • [30] Comparison of calcium phosphate coatings on AZ31 and fluoride-treated AZ31 alloy prepared by hydrothermal method and their electrochemical corrosion behaviour
    Zhang, Chunyan
    Zhang, Jun
    Zhang, Shiyu
    Wang, Zhenlin
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 220 : 395 - 401