Quantum error-correcting output codes

被引:6
作者
Windridge, David [1 ,2 ]
Mengoni, Riccardo [3 ]
Nagarajan, Rajagopal [1 ]
机构
[1] Middlesex Univ, Fac Sci & Technol, Dept Comp Sci, London NW4 4BT, England
[2] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GUZ 7XH, Surrey, England
[3] Univ Verona, Dept Informat, I-37134 Verona, Italy
基金
欧盟地平线“2020”;
关键词
Quantum machine learning; error-correcting output codes; support vector machines;
D O I
10.1142/S0219749918400038
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum machine learning is the aspect of quantum computing concerned with the design of algorithms capable of generalized learning from labeled training data by effectively exploiting quantum effects. Error-correcting output codes (ECOC) are a standard setting in machine learning for efficiently rendering the collective outputs of a binary classifier, such as the support vector machine, as a multi-class decision procedure. Appropriate choice of error-correcting codes further enables incorrect individual classification decisions to be effectively corrected in the composite output. In this paper, we propose an appropriate quantization of the ECOC process, based on the quantum support vector machine. We will show that, in addition to the usual benefits of quantizing machine learning, this technique leads to an exponential reduction in the number of logic gates required for effective correction of classification error.
引用
收藏
页数:12
相关论文
共 22 条
  • [1] Quantum speed-up for unsupervised learning
    Aimeur, Esma
    Brassard, Gilles
    Gambs, Sebastien
    [J]. MACHINE LEARNING, 2013, 90 (02) : 261 - 287
  • [2] Reducing multiclass to binary: A unifying approach for margin classifiers
    Allwein, EL
    Schapire, RE
    Singer, Y
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2001, 1 (02) : 113 - 141
  • [3] Altaisky M., ARXIV150305125QUANTP
  • [4] [Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
  • [5] Bagheri M. Ali, 2012, P 16 CSI INT S ART I
  • [6] Quantum partially observable Markov decision processes
    Barry, Jennifer
    Barry, Daniel T.
    Aaronson, Scott
    [J]. PHYSICAL REVIEW A, 2014, 90 (03):
  • [7] Biclustering with a quantum annealer
    Bottarelli, Lorenzo
    Bicego, Manuele
    Denitto, Matteo
    Di Pierro, Alessandra
    Farinelli, Alessandro
    Mengoni, Riccardo
    [J]. SOFT COMPUTING, 2018, 22 (18) : 6247 - 6260
  • [8] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
  • [9] Subclass problem-dependent design for error-correcting output codes
    Escalera, Sergio
    Tax, David M. J.
    Pujol, Oriol
    Radeva, Petia
    Duin, Robert P. W.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (06) : 1041 - 1054
  • [10] Eun Bae Kong, 1995, Machine Learning. Proceedings of the Twelfth International Conference on Machine Learning, P313