Multi-peakon solutions of the Degasperis-Procesi equation

被引:235
作者
Lundmark, H [1 ]
Szmigielski, J
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
[2] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
关键词
Continued fraction - Degasperis-Procesi equation - Inverse scattering - Multi peakon solutions - Shallow water equation;
D O I
10.1088/0266-5611/19/6/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an inverse scattering approach for computing n-peakon solutions of the Degasperis-Procesi equation (a modification of the Camassa-Holm (CH) shallow water equation). The associated non-self-adjoint spectral problem is shown to be amenable to analysis using the isospectral deformations induced from the n-peakon solution, and the inverse problem is solved by a method eneralizing the continued fraction solution of the peakon sector of the CH equation.
引用
收藏
页码:1241 / 1245
页数:5
相关论文
共 7 条
[1]   Multi-peakons and a theorem of Stieltjes [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
INVERSE PROBLEMS, 1999, 15 (01) :L1-L4
[2]   Multipeakons and the classical moment problem [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
ADVANCES IN MATHEMATICS, 2000, 154 (02) :229-257
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]   A new integrable equation with peakon solutions [J].
Degasperis, A ;
Holm, DD ;
Hone, ANW .
THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (02) :1463-1474
[5]  
Degasperis A., 1999, SYMMETRY PERTURBATIO, P22
[6]  
Degasperis A., 2003, Nonlinear Physics: Theory and Experiment, VII, P37
[7]  
MOSER J, 1975, SPRINGER LECT NOTES, V38