The arithmetic and geometry of Salem numbers

被引:30
作者
Ghate, E
Hironaka, E
机构
[1] Tata Inst Fundamental Res, Sch Math, Mumbai 400005, India
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
D O I
10.1090/S0273-0979-01-00902-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Salem number is a real algebraic integer, greater than 1, with the property that all of its conjugates lie on or within the unit circle, and at least one conjugate lies on the unit circle. In this paper we survey some of the recent appearances of Salem numbers in parts of geometry and arithmetic, and discuss the possible implications for the 'minimization problem'. This is an old question in number theory which asks whether the set of Salem numbers is bounded away from 1.
引用
收藏
页码:293 / 314
页数:22
相关论文
共 51 条
[1]  
[Anonymous], GTM
[2]  
ARTIN E, 1967, CLASS FIELD THEORY H
[3]  
Bertin M.J., 1992, PISOT SALEM NUMBERS
[4]  
BORNHORN H, 1999, 478 SFB GEOM STRUKT
[5]  
Bourbaki N., 1968, GROUPES ALGEBRES LIE, V1337
[6]   SMALL SALEM NUMBERS [J].
BOYD, DW .
DUKE MATHEMATICAL JOURNAL, 1977, 44 (02) :315-328
[7]  
BOYD DW, 1978, MATH COMPUT, V32, P1244, DOI 10.1090/S0025-5718-1978-0491587-8
[8]   Mahler's measure and special values of L-functions [J].
Boyd, DW .
EXPERIMENTAL MATHEMATICS, 1998, 7 (01) :37-82
[9]   SPECULATIONS CONCERNING THE RANGE OF MAHLERS MEASURE [J].
BOYD, DW .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (04) :453-469
[10]  
BOYD DW, 1980, MATH COMPUT, V35, P1361, DOI 10.1090/S0025-5718-1980-0583514-9