Multicriteria optimal control and vectorial Hamilton-Jacobi equation

被引:3
|
作者
Caroff, Nathalie [1 ]
机构
[1] Univ Perpignan, Lab MANO, F-66860 Perpignan, France
来源
LARGE-SCALE SCIENTIFIC COMPUTING | 2008年 / 4818卷
关键词
D O I
10.1007/978-3-540-78827-0_32
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we investigate a multicriteria optimal control problem associated to a preference relation based on the lexicographic order. We extend different notions of non-smooth analysis and control and show that the vector Value function is the unique vector lower semi-continuous solution to a suitable system of Hamilton-Jacobi equations in the sense of contingent solution or equivalently in the sense of extended viscosity solution.
引用
收藏
页码:293 / 299
页数:7
相关论文
共 50 条
  • [21] HAMILTON-JACOBI EQUATION REVISITED
    BABUJOSEPH, K
    MUKUNDA, N
    PRAMANA, 1975, 4 (01) : 1 - 18
  • [22] Quantum Hamilton-Jacobi equation
    Periwal, V
    PHYSICAL REVIEW LETTERS, 1998, 80 (20) : 4366 - 4369
  • [23] OPTIMAL TRAJECTORIES ASSOCIATED WITH A SOLUTION OF THE CONTINGENT HAMILTON-JACOBI EQUATION
    FRANKOWSKA, H
    APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 19 (03): : 291 - 311
  • [24] SEMICONCAVE FUNCTIONS, HAMILTON-JACOBI EQUATIONS, AND OPTIMAL CONTROL
    Maslowski, Bohdan
    MATHEMATICA BOHEMICA, 2007, 132 (02): : 220 - 220
  • [25] Semiconcave Functions, Hamilton-Jacobi equations and Optimal Control
    Pascu, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (05): : 592 - 594
  • [26] HAMILTON-JACOBI EQUATIONS FOR OPTIMAL CONTROL ON JUNCTIONS AND NETWORKS
    Achdou, Yves
    Oudet, Salome
    Tchou, Nicoletta
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (03) : 876 - 899
  • [27] Hamilton-Jacobi inequalities for optimal impulsive control problems
    Institute for System Dynamics and Control Theory, SB RAS, Irkutsk, Russia
    IFAC Proc. Vol. (IFAC-PapersOnline), 1 PART 1 (6816-6821):
  • [28] Discrete Hamilton-Jacobi Theory and Discrete Optimal Control
    Ohsawa, Tomoki
    Bloch, Anthony M.
    Leok, Melvin
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 5438 - 5443
  • [29] Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control
    Pascu, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (01): : 121 - 122
  • [30] The Hamilton-Jacobi equation on Lie affgebroids
    Marrero, J. C.
    Sosa, D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 605 - 622