Solid-State Infiltration of 6061-T6 Aluminum Alloy Into Carbon Fibers Via Friction Stir Welding

被引:11
|
作者
Franke, Daniel J. [1 ]
Morrow, Justin D. [1 ]
Zinn, Michael R. [2 ]
Pfefferkorn, Frank E. [3 ]
机构
[1] Univ Wisconsin, Dept Mech Engn, 1513 Univ Ave,Mech Engn Bldg 1001, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Mech Engn, 1513 Univ Ave,Mech Engn Bldg 3043, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Mech Engn, 1513 Univ Ave,Mech Engn Bldg 1031, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
friction stir welding; modeling; aluminum; carbon fiber; composites; hybrid joining; POLYMER; MICROSTRUCTURE; PERMEABILITY; SIMULATION;
D O I
10.1115/1.4037421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hybrid welding/joining of lightweight metals to carbon fiber reinforced polymers (CFRPs) typically relies on the adhesive bond created, when the molten polymer matrix hardens in contact with the metallic surface. lt is hypothesized that these bonds can be improved upon by fully displacing the polymer and infiltrating the carbon fibers with the metallic constituent to create load-bearing fibers that bridge the two materials. Friction stir welding (FSW) holds potential to melt and displace the polymer matrix, plasticize the metal constituent, and force the plasticized metal to flow around the fibers. Preliminary investigations were performed by FSW in AA 6061-T6 plates sandwiched, against dry carbon fiber bundles. The FSW process plasticizes the aluminum while applying pressure, forcing the material to flow around the fibers. Cross-sectional images of the samples were used to measure the distance of infiltration of the aluminum into the carbon fiber bed. A fiber infiltration model previously developed to describe the infiltration of carbon fibers with epoxy resins during resin transfer molding was applied to this solid-state infiltration situation, thus modeling the plasticized aluminum as a fluid with an effective viscosity. Promising agreement was seen between the measured distances of infiltration and the predicted distances of infiltration when using effective viscosity values predicted by computational fluid dynamics (CFD) simulations of FSW found in literature. This work indicates that the well-established epoxy infiltration model can form the basis of a model to describe solid-state infiltration of carbon fibers with a plasticized metal.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6
    Chao, YJ
    Qi, XH
    JOURNAL OF MATERIALS PROCESSING & MANUFACTURING SCIENCE, 1998, 7 (02): : 215 - 233
  • [22] Flat friction stir spot welding of three 6061-T6 aluminum sheets
    Sun, Yufeng
    Fujii, Hidetoshi
    Zhu, Shijie
    Guan, Shaokang
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 264 : 414 - 421
  • [23] 6061-T6/7075-T6 heterogeneous aluminum alloy friction stir welding head microstructure and performance
    Gao S.
    Zhou L.
    Zhang X.
    Zhang J.
    Li G.
    Zhao H.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2022, 43 (06): : 35 - 42
  • [24] Fully coupled thermomechanical simulation of friction stir welding of aluminum 6061-T6 alloy T-joint
    Salloomi, Kareem N.
    JOURNAL OF MANUFACTURING PROCESSES, 2019, 45 : 746 - 754
  • [25] Experimental Determination of the Effective Viscosity of Plasticized Aluminum Alloy 6061-T6 during Friction Stir Welding
    Franke, Daniel J.
    Morrow, Justin D.
    Zinn, Michael R.
    Duffie, Neil A.
    Pfefferkorn, Frank E.
    45TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE (NAMRC 45), 2017, 10 : 218 - 231
  • [26] HEAT INPUT EFFECT OF FRICTION STIR WELDING ON ALUMINUM ALLOY AA 6061-T6 WELDED JOINT
    Sedmak, Aleksandar S.
    Kumar, Ratnesh
    Chattopadhyaya, Somnath
    Hloch, Sergej
    Tadic, Srdjan S.
    Djurdjevic, Andrijana A.
    Cekovic, Ivana
    Donceva, Elisaveta
    THERMAL SCIENCE, 2016, 20 (02): : 637 - 641
  • [27] Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper
    Zhang, Jingqing
    Shen, Yifu
    Yao, Xin
    Xu, Haisheng
    Li, Bo
    MATERIALS & DESIGN, 2014, 64 : 74 - 80
  • [28] Effect of Modified Pin Profile and Process Parameters on the Friction Stir Welding of Aluminum Alloy 6061-T6
    Verduzco Juarez, J. C.
    Dominguez Almaraz, G. M.
    Garcia Hernandez, R.
    Villalon Lopez, J. J.
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2016, 2016
  • [29] Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation
    Mohammad Riahi
    Hamidreza Nazari
    The International Journal of Advanced Manufacturing Technology, 2011, 55 : 143 - 152
  • [30] Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation
    Riahi, Mohammad
    Nazari, Hamidreza
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 55 (1-4): : 143 - 152