Tunable Performance of Quantum Dot-MoS2 Hybrid Photodetectors via Interface Engineering

被引:14
作者
Chang, Ruiheng [1 ,2 ]
Wang, Kexin [1 ,2 ]
Zhang, Youwei [1 ,2 ]
Ma, Tianzi [3 ,4 ]
Tang, Jianwei [3 ,4 ]
Chen, Xue-Wen [3 ,4 ]
Zhang, Butian [1 ,2 ]
Wang, Shun [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, MOE Key Lab Fundamental Phys Quant Measurement, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, PGMF, Hubei Key Lab Gravitat & Quantum Phys, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
hybrid photodetector; tunable performance; interface engineering; band alignments; MoS2; quantum dots; ENERGY-TRANSFER; 2-DIMENSIONAL MATERIALS; CHARGE SEPARATION; ELECTRON-TRANSFER; DOTS; GRAPHENE; RECOMBINATION; PHOTOTRANSISTORS; RATES; MOS2;
D O I
10.1021/acsami.1c10888
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Heterostructures of quantum dots (QDs) and two-dimensional (2D) materials show promising potential for photodetection applications owing to their combination of high optical absorption and good in-plane carrier mobility. In this work, the performance of QD-2D photodetectors is tuned by band engineering. Devices are fabricated by coating MoS2 nanosheets with InP QDs, type-I core-shell InP/ZnS QDs, and type-II core-shell InP/CdS QDs. Comparative spectroscopic and photoelectric studies of different hybrids show that the energy band 2 alignment and shell thickness can influence the efficiency of charge transfer (CT), energy transfer (ET), and defect-related processes between QDs and MoS2. Benefiting from efficient CT between the QDs and MoS2, a significant enhancement of responsivity and detectivity is observed in thick-shell InP/CdS QD-MoS2 devices. Our results demonstrate the feasibility of using core-shell QDs for regulating the ET and CT efficiency in heterostructures and highlight the importance of interface band design in QD-2D and other low-dimensional photodetectors.
引用
收藏
页码:59411 / 59421
页数:11
相关论文
共 67 条
[41]   Core/Shell Semiconductor Nanocrystals [J].
Reiss, Peter ;
Protiere, Myriam ;
Li, Liang .
SMALL, 2009, 5 (02) :154-168
[42]   Photoinduced charge transfer between CdSe quantum dots and p-phenylenediamine [J].
Sharma, SN ;
Pillai, ZS ;
Kamat, PV .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (37) :10088-10093
[43]   Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology [J].
Sun, Zhenhua ;
Chang, Haixin .
ACS NANO, 2014, 8 (05) :4133-4156
[44]   Fabrication and optical properties of Mn2+-doped CdS/ZnS core/shell nanocrystals [J].
Takada, Masahiro ;
Ishizumi, Atsushi ;
Yanagi, Hisao .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 12, 2012, 9 (12) :2469-2472
[45]   Aminophosphines: A Double Role in the Synthesis of Colloidal Indium Phosphide Quantum Dots [J].
Tessier, Mickael D. ;
De Nolf, Kim ;
Dupont, Dorian ;
Sinnaeve, Davy ;
De Roo, Jonathan ;
Hens, Zeger .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (18) :5923-5929
[46]   Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness [J].
Toufanian, Reyhaneh ;
Piryatinski, Andrei ;
Mahler, Andrew H. ;
Iyer, Radhika ;
Hollingsworth, Jennifer A. ;
Dennis, Allison M. .
FRONTIERS IN CHEMISTRY, 2018, 6
[47]   Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles [J].
Tvrdy, Kevin ;
Frantsuzov, Pavel A. ;
Kamat, Prashant V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (01) :29-34
[48]   Two dimensional materials based photodetectors [J].
Wang, Guangyao ;
Zhang, Yongzhe ;
You, Congya ;
Liu, Beiyun ;
Yang, Yanhan ;
Li, Huangjingwei ;
Cui, Ajuan ;
Liu, Danmin ;
Yan, Hui .
INFRARED PHYSICS & TECHNOLOGY, 2018, 88 :149-173
[49]   Tuning Electron Transfer Rates through Molecular Bridges in Quantum Dot Sensitized Oxides [J].
Wang, Hai ;
McNellis, Erik R. ;
Kinge, Sachin ;
Bonn, Mischa ;
Canovas, Enrique .
NANO LETTERS, 2013, 13 (11) :5311-5315
[50]  
Wang Y., ADV FUNCT MATER, V31