Fabrication of microstructured materials based on chitosan and D,L-lactide copolymers using laser-induced microstereolithography

被引:6
作者
Demina, T. S. [1 ]
Bardakova, K. N. [2 ]
Svidchenko, E. A. [3 ]
Minaev, N. V. [2 ]
Pudovkina, G. I. [2 ]
Novikov, M. M. [2 ]
Butnaru, D. V. [1 ]
Surin, N. M. [3 ]
Akopova, T. A. [3 ]
Bagratashvili, V. N. [2 ]
Zelenetskii, A. N. [3 ]
Timashev, P. S. [2 ]
机构
[1] Sechenov First Moscow State Med Univ, Minist Hlth Russian Federat, Ul Bolshaya Pirogovskaya 2-4, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Laser & Informat Technol, Ul Pionerskaya 2, Moscow 142092, Russia
[3] Russian Acad Sci, Enikolopov Inst Synthet Polymer Mat, Ul Profsoyuznaya 70, Moscow 117393, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
laser stereolithography; chitosan; two-photon polymerization; graft copolymers; lactide; regenerative medicine; 2-PHOTON POLYMERIZATION; STEREOLITHOGRAPHY; DERIVATIVES; CARTILAGE; SCAFFOLDS; BONE;
D O I
10.1134/S0018143916050088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The graft copolymers of chitosan and oligo(D,L-lactide) obtained by solid-phase synthesis have been used as the basis of photosensitive compositions for the fabrication of three-dimensional microstructures by laser-induced stereolithography. The electronic absorption spectra of the copolymers are close to the sum of the spectra of native chitosan and polylactide, which has been chosen as a model of grafted oligolactide chains. The fundamental absorption bands of the copolymers lie in a range to 500 nm, and their contribution to the absorption intensity of a photosensitive composition based on the copolymers at second harmonic laser frequency is insignificant. Depending on the macromolecular characteristics of the copolymers, the three-dimensional crosslinking of photosensitive compositions on their basis in the course of microstructuring occurs with different efficiency.
引用
收藏
页码:389 / 394
页数:6
相关论文
共 15 条
[1]  
Akopova T. A., 2015, IOP C SER MAT SCI EN, V87, P1088
[2]   Solid-state synthesis of unsaturated chitosan derivatives to design 3D structures through two-photon-induced polymerization [J].
Akopova, Tatiana A. ;
Timashev, Petr S. ;
Demina, Tatiana S. ;
Bardakova, Kseniya N. ;
Minaev, Nikita V. ;
Burdukovskii, Vitalii F. ;
Cherkaev, Georgii V. ;
Vladimirov, Leonid V. ;
Istomin, Aleksandr V. ;
Svidchenko, Evgeniya A. ;
Surin, Nikolay M. ;
Bagratashvili, Viktor N. .
MENDELEEV COMMUNICATIONS, 2015, 25 (04) :280-282
[3]   Two-Photon Polymerization for Fabricating Structures Containing the Biopolymer Chitosan [J].
Correa, D. S. ;
Tayalia, P. ;
Cosendey, G. ;
dos Santos, D. S., Jr. ;
Aroca, R. F. ;
Mazur, E. ;
Mendonca, C. R. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (10) :5845-5849
[4]   Chitosan-based biomaterials for tissue engineering [J].
Croisier, Florence ;
Jerome, Christine .
EUROPEAN POLYMER JOURNAL, 2013, 49 (04) :780-792
[5]   Polylactide-based microspheres prepared using solid-state copolymerized chitosan and D,L-lactide [J].
Demina, T. S. ;
Akopova, T. A. ;
Vladimirov, L. V. ;
Zelenetskii, A. N. ;
Markvicheva, E. A. ;
Grandfils, Ch. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 59 :333-338
[6]  
Demina T. S., 2015, IOP C SER MAT SCI EN, V87, P1088
[7]   Scaffolds in tissue engineering bone and cartilage [J].
Hutmacher, DW .
BIOMATERIALS, 2000, 21 (24) :2529-2543
[8]   Cartilage Repair: Synthetics and Scaffolds Basic Science, Surgical Techniques, and Clinical Outcomes [J].
Kerker, Jordan T. ;
Leo, Andrew J. ;
Sgaglione, Nicholas A. .
SPORTS MEDICINE AND ARTHROSCOPY REVIEW, 2008, 16 (04) :208-216
[9]   Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization [J].
Kufelt, Olga ;
El-Tamer, Ayman ;
Sehring, Camilla ;
Meissner, Marita ;
Schlie-Wolter, Sabrina ;
Chichkov, Boris N. .
ACTA BIOMATERIALIA, 2015, 18 :186-195
[10]   A review on stereolithography and its applications in biomedical engineering [J].
Melchels, Ferry P. W. ;
Feijen, Jan ;
Grijpma, Dirk W. .
BIOMATERIALS, 2010, 31 (24) :6121-6130