Finite-size scaling of directed percolation above the upper critical dimension -: art. no. 016119

被引:12
作者
Lübeck, S
Janssen, HK
机构
[1] Univ Duisberg Essen, Inst Theoret Phys, D-47048 Duisburg, Germany
[2] Univ Dusseldorf, Inst Theoret Phys 2, D-40225 Dusseldorf, Germany
关键词
D O I
10.1103/PhysRevE.72.016119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near the nonequilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimension, whereas it fails above. Performing a momentum analysis of associated path integrals we derive modified finite-size scaling forms of the order parameter and its higher moments. The results are confirmed by numerical simulations of corresponding high-dimensional lattice models.
引用
收藏
页数:4
相关论文
共 34 条
[1]  
BARBER MN, 1984, FINITE SIZE SCALING, V8
[2]   FINITE-SIZE TESTS OF HYPERSCALING [J].
BINDER, K ;
NAUENBERG, M ;
PRIVMAN, V ;
YOUNG, AP .
PHYSICAL REVIEW B, 1985, 31 (03) :1498-1502
[3]   Universality and the five-dimensional Ising model [J].
Blote, HWJ ;
Luijten, E .
EUROPHYSICS LETTERS, 1997, 38 (08) :565-570
[4]  
BRANKOV J.G., 2000, S MOD COND, V9
[5]   AN INVESTIGATION OF FINITE SIZE SCALING [J].
BREZIN, E .
JOURNAL DE PHYSIQUE, 1982, 43 (01) :15-22
[6]   FINITE SIZE EFFECTS IN PHASE-TRANSITIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1985, 257 (06) :867-893
[7]  
BUASCH R, 1976, PHYS B, V24, P113
[8]  
Cardy J.L., 1988, Finite-size Scaling
[9]   DIRECTED PERCOLATION AND REGGEON FIELD-THEORY [J].
CARDY, JL ;
SUGAR, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (12) :L423-L427
[10]  
Chen XS, 2001, PHYS REV E, V63, DOI 10.1103/PhysRevE.63.016113