Surfactant free hydrothermally derived ZnO nanowires, nanorods, microrods and their characterization

被引:40
作者
Nagaraju, G. [1 ]
Ashoka, S. [1 ]
Chithaiah, P. [1 ]
Tharamani, C. N. [2 ]
Chandrappa, G. T. [1 ]
机构
[1] Bangalore Univ, Dept Chem, Bangalore 560056, Karnataka, India
[2] Univ Saskatchewan, Dept Chem, Saskatoon, SK S7N 5C9, Canada
关键词
Surfactant; Hydrothermal; Nanorods; Nanowires; Microrods; ZINC-OXIDE; LOW-TEMPERATURE; GROWTH; NANOSTRUCTURES; EMISSION; NANOCRYSTALS; UV;
D O I
10.1016/j.mssp.2010.02.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
ZnO nanowires, nanorods and microrods have been prepared by an organic-free hydrothermal process using ZnSO4 and NaOH/NH4OH solutions. The powder X-ray diffraction (PXRD) patterns reveal that the ZnO nano/microrods are of hexagonal wurtzite structure. The Fourier transform infrared (FT-IR) spectrum of ZnO powder shows only one significant spectroscopic band at around 417 cm(-1) associated with the characteristic vibrational mode of Zn-O bonding. The thickness 75-300 nm for ZnO nanorods and 0.2-1.8 mu m for microrods are identified from SEM/TEM images. UV-visible absorption spectra of ZnO nano/microrods show the blue shift. The UV band and green emission observed in photoluminescence (PL) spectra are due to free exciton emission and singly ionized oxygen vacancy in ZnO. Finally, the mechanism for organic-free hydrothermal synthesis of the ZnO nano/microrods is discussed. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
[31]   Characterization and Modeling of Catalyst-free Carbon-Assisted Synthesis of ZnO Nanowires [J].
Kong, Xiangcheng ;
Wei, Chuang ;
Zhu, Yong ;
Cohen, Paul ;
Dong, Jingyan .
JOURNAL OF MANUFACTURING PROCESSES, 2018, 32 :438-444
[32]   A Comparison of ZnO Nanowires and Nanorods Grown Using MOCVD and Hydrothermal Processes [J].
Rivera, Abdiel ;
Zeller, John ;
Sood, Ashok ;
Anwar, Mehdi .
JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (05) :894-900
[33]   A Comparison of ZnO Nanowires and Nanorods Grown Using MOCVD and Hydrothermal Processes [J].
Abdiel Rivera ;
John Zeller ;
Ashok Sood ;
Mehdi Anwar .
Journal of Electronic Materials, 2013, 42 :894-900
[34]   Photoresponse of hydrothermally grown lateral ZnO nanowires [J].
Yang, Po-Yu ;
Wang, Jyh-Liang ;
Tsai, Wei-Chih ;
Wang, Shui-Jinn ;
Lin, Jia-Chuan ;
Lee, I-Che ;
Chang, Chia-Tsung ;
Cheng, Huang-Chung .
THIN SOLID FILMS, 2010, 518 (24) :7328-7332
[35]   Template-free hydrothermal synthesis of ZnO microrods for gas sensor application [J].
Wang, Xinmin ;
Yu, Chengqun ;
Wu, Junxi ;
Zhang, Yidong .
IONICS, 2013, 19 (02) :355-360
[36]   Synthesis and characterization of nanoporous, nanorods, nanowires metal oxides [J].
Pavasupree, S ;
Suzuki, Y ;
Pivsa-Art, S ;
Yoshikawa, S .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2005, 6 (3-4) :224-229
[37]   Fabrication, characterization and magnetic properties of Na-doped ZnO nanorods [J].
Piao, Jingyuan ;
Tseng, Li-Ting ;
Suzuki, Kiyonori ;
Yi, Jiabao .
FUNCTIONAL MATERIALS LETTERS, 2016, 9 (03)
[38]   Substrate effect of hydrothermally grown ZnO nanorods and its luminescence properties [J].
Das, Siddhant K. ;
Sahoo, Surya N. ;
Sarangi, S. N. ;
Sahoo, P. K. .
JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2013, 8 (03) :382-388
[39]   Controllable synthesis of ZnO architectures by a surfactant-free hydrothermal process [J].
Du, Guixiang ;
Zhang, Lidong ;
Feng, Yan ;
Xu, Yanyan ;
Sun, YuXiu ;
Ding, Bin ;
Wang, Qian .
MATERIALS LETTERS, 2012, 73 :86-88
[40]   Surfactant-free preparation of ZnO dendritic structures by electrochemical method [J].
Kim, Sung Joong ;
Kang, Hee-Gyoo ;
Choi, Jinsub .
CURRENT APPLIED PHYSICS, 2010, 10 (03) :740-743