Surfactant free hydrothermally derived ZnO nanowires, nanorods, microrods and their characterization

被引:39
作者
Nagaraju, G. [1 ]
Ashoka, S. [1 ]
Chithaiah, P. [1 ]
Tharamani, C. N. [2 ]
Chandrappa, G. T. [1 ]
机构
[1] Bangalore Univ, Dept Chem, Bangalore 560056, Karnataka, India
[2] Univ Saskatchewan, Dept Chem, Saskatoon, SK S7N 5C9, Canada
关键词
Surfactant; Hydrothermal; Nanorods; Nanowires; Microrods; ZINC-OXIDE; LOW-TEMPERATURE; GROWTH; NANOSTRUCTURES; EMISSION; NANOCRYSTALS; UV;
D O I
10.1016/j.mssp.2010.02.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
ZnO nanowires, nanorods and microrods have been prepared by an organic-free hydrothermal process using ZnSO4 and NaOH/NH4OH solutions. The powder X-ray diffraction (PXRD) patterns reveal that the ZnO nano/microrods are of hexagonal wurtzite structure. The Fourier transform infrared (FT-IR) spectrum of ZnO powder shows only one significant spectroscopic band at around 417 cm(-1) associated with the characteristic vibrational mode of Zn-O bonding. The thickness 75-300 nm for ZnO nanorods and 0.2-1.8 mu m for microrods are identified from SEM/TEM images. UV-visible absorption spectra of ZnO nano/microrods show the blue shift. The UV band and green emission observed in photoluminescence (PL) spectra are due to free exciton emission and singly ionized oxygen vacancy in ZnO. Finally, the mechanism for organic-free hydrothermal synthesis of the ZnO nano/microrods is discussed. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [21] Particulate assisted growth of ZnO nanorods and microrods by pulsed laser deposition
    Premkumar, T.
    Manoravi, P.
    Panigrahi, K.
    Baskar, K.
    APPLIED SURFACE SCIENCE, 2009, 255 (15) : 6819 - 6822
  • [22] Controlled synthesis and luminescence of Eu doped ZnO nanowires and nanorods via hydrothermal method
    Trinh Thi Hang
    Trinh Xuan Anh
    Pham Thanh Huy
    APCTP-ASEAN WORKSHOP ON ADVANCED MATERIALS SCIENCE AND NANOTECHNOLOGY (AMSN08), 2009, 187
  • [23] Photoluminescence Study of the Influence of Additive Ammonium Hydroxide in Hydrothermally Grown ZnO Nanowires
    A. S. Dahiya
    S. Boubenia
    G. Franzo
    G. Poulin-Vittrant
    S. Mirabella
    D. Alquier
    Nanoscale Research Letters, 2018, 13
  • [24] Morphological dependence of hydrothermally synthesized ZnO nanowires on synthesis temperature and molar concentration
    Choi, Koang Ouk
    Yoon, Sang Hyun
    Kim, Won-Seok
    Lee, Kyu-Ha
    Yang, Cheol-Min
    Han, Jong Hun
    Kang, Chi Jung
    Choi, Young Jin
    Yoon, Tae-Sik
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (07): : 1448 - 1453
  • [25] Effect of Annealing on Photocatalytic Activities of Hydrothermally Grown ZnO Nanorods
    Liu, F. Z.
    Mok, Y. Y.
    Guo, M. Y.
    Ng, A. M. C.
    Djurisic, A. B.
    Chan, W. K.
    PHYSICS OF SEMICONDUCTORS, 2013, 1566 : 71 - +
  • [26] Preparation of ZnO nanorods via surfactant assisted hydrothermal synthesis
    Chu De-Wei
    Zeng Yu-Ping
    Jiang Dong-Liang
    JOURNAL OF INORGANIC MATERIALS, 2006, 21 (03) : 571 - 575
  • [27] ZnO Nanorods Grown on Rhombic ZnO Microrods for Enhanced Photocatalytic Activity
    Zhu, Yufu
    Yan, Jiaying
    Zhou, Lei
    Feng, Liangdong
    NANOMATERIALS, 2022, 12 (17)
  • [28] Influence of substrate surface energy and surfactant on crystalline morphology and surface defect density in hydrothermally-grown ZnO nanowires
    Park, Ji-Sub
    Mahmud, Imtiaz
    Shin, Young-Chul
    Choi, Jun-Chan
    Kim, Byeonggon
    Shin, Han Jae
    Choi, Yoonseuk
    Kim, Hak-Rin
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 77 : 64 - 73
  • [29] Photoelectrochemical Water Splitting Properties of Hydrothermally-Grown ZnO Nanorods with Controlled Diameters
    Babu, Eadi Sunil
    Hong, Soon-Ku
    Thanh Son Vo
    Jeong, Jong-Ryul
    Cho, Hyung Koun
    ELECTRONIC MATERIALS LETTERS, 2015, 11 (01) : 65 - 72
  • [30] Morphology and Photoelectric Properties of Hydrothermally Derived ZnO
    He Xinhua
    He Xutao
    Fu Xiaoyi
    RARE METAL MATERIALS AND ENGINEERING, 2016, 45 : 404 - 408