Rigorous bounds for Renyi entropies of spherically symmetric potentials

被引:0
作者
Sanchez-Moreno, Pablo [1 ,2 ]
Zozor, Steeve [3 ]
Dehesa, Jesus S. [1 ,4 ]
机构
[1] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071\ Granada, Spain
[2] Univ Granada, Dept Mat Aplicada, Granada 18071, Spain
[3] Domaine Univ, GIPSA Lab, F-38402 St Martin Dheres, France
[4] Univ Granada, Dept Fis Atom, Granada 18071, Spain
来源
BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING | 2010年 / 1305卷
关键词
Renyi entropy; Shannon entropy; spherically symmetric potentials; variational upper bounds; DENSITY-DEPENDENT QUANTITIES; INFORMATION ENTROPY; UNCERTAINTY; SYSTEMS;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Renyi and Shannon entropies are information-theoretic measures which have enabled to formulate the position-momentum uncertainty principle in a much more adequate and stringent way than the (variance-based) Heisenberg-like relation. Moreover, they are closely related to various energetic density-functionals of quantum systems. Here we find sharp upper bounds to these quantities in terms of the second order moment < r(2)> for general spherically symmetric potentials, which substantially improve previous results of this type, by means of the Reny maximization procedure with a covariance constraint due to Costa, Hero and Vignat [1]. The contributions to these bounds coming from the radial and angular parts of the physical wave functions are explicitly given.
引用
收藏
页码:192 / +
页数:2
相关论文
共 22 条
[1]   TIGHT RIGOROUS BOUNDS TO ATOMIC INFORMATION ENTROPIES [J].
ANGULO, JC ;
DEHESA, JS .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (09) :6485-6495
[2]   INFORMATION ENTROPY AND UNCERTAINTY IN D-DIMENSIONAL MANY-BODY SYSTEMS [J].
ANGULO, JC .
PHYSICAL REVIEW A, 1994, 50 (01) :311-313
[3]  
AVERY JS, 2002, HYPERSPHERICAL HARMO, P32516
[4]   Formulation of the uncertainty relations in terms of the Renyi entropies [J].
Bialynicki-Birula, Iwo .
PHYSICAL REVIEW A, 2006, 74 (05)
[5]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[6]  
COSTA JA, 2003, SCIENCES, V2683, P211
[7]  
Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed
[8]   Information Theory of D-Dimensional Hydrogenic Systems: Application to Circular and Rydberg States [J].
Dehesa, J. S. ;
Lopez-Rosa, S. ;
Martinez-Finkelshtein, A. ;
Yanez, R. J. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2010, 110 (08) :1529-1548
[9]  
Dehesa J. S., 2010, Statistical Complexities: Applications in Electronic Structures
[10]   BOUNDS TO DENSITY-DEPENDENT QUANTITIES OF D-DIMENSIONAL MANY-PARTICLE SYSTEMS IN POSITION AND MOMENTUM SPACES - APPLICATIONS TO ATOMIC SYSTEMS [J].
DEHESA, JS ;
GALVEZ, FJ ;
PORRAS, I .
PHYSICAL REVIEW A, 1989, 40 (01) :35-40