Synchronization and Non-Smooth Dynamical Systems

被引:2
|
作者
Llibre, Jaume [2 ]
da Silva, Paulo R. [1 ]
Teixeira, Marco A. [3 ]
机构
[1] Univ Estadual Paulista, Dept Matemat, IBILCE, BR-15054000 Sao Paulo, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Regularization; Vector field; Constrained system; Singular perturbation; Non-smooth vector field; Sliding vector field; Synchronization; DISCONTINUOUS VECTOR-FIELDS;
D O I
10.1007/s10884-012-9239-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we establish an interaction between non-smooth systems, geometric singular perturbation theory and synchronization phenomena. We find conditions for a non-smooth vector fields be locally synchronized. Moreover its regularization provide a singular perturbation problem with attracting critical manifold. We also state a result about the synchronizationwhich occurs in the regularization of the fold-fold case. We restrict ourselves to the 3-dimensional systems (l = 3) and consider the case known as a T-singularity.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Synchronization and Non-Smooth Dynamical Systems
    Jaume Llibre
    Paulo R. da Silva
    Marco A. Teixeira
    Journal of Dynamics and Differential Equations, 2012, 24 : 1 - 12
  • [2] Non-smooth dynamical systems
    Leine, Remco I.
    van de Wouw, Nathan
    Lecture Notes in Applied and Computational Mechanics, 2008, 36 : 59 - 77
  • [3] Concepts for non-smooth dynamical systems
    Küpper, T
    MATHEMATICS AND THE 21ST CENTURY, 2001, : 123 - 140
  • [4] On a class of non-smooth dynamical systems: A sufficient condition for smooth versus non-smooth solutions
    Danca, M. -F.
    REGULAR & CHAOTIC DYNAMICS, 2007, 12 (01): : 1 - 11
  • [5] On a class of non-smooth dynamical systems: a sufficient condition for smooth versus non-smooth solutions
    M. -F. Danca
    Regular and Chaotic Dynamics, 2007, 12 : 1 - 11
  • [6] Invariant cones for non-smooth dynamical systems
    Kuepper, Tassilo
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) : 1396 - 1408
  • [7] On the control of non-smooth complementarity dynamical systems
    Brogliato, B
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1789): : 2369 - 2383
  • [8] Bifurcation phenomena in non-smooth dynamical systems
    Leine, R. I.
    van Campen, D. H.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2006, 25 (04) : 595 - 616
  • [9] Spectral analysis of non-smooth dynamical systems
    Wedig, WV
    STOCHASTIC STRUCTURAL DYNAMICS, 1999, : 249 - 256
  • [10] On the birth of limit cycles for non-smooth dynamical systems
    Llibre, Jaume
    Novaes, Douglas D.
    Teixeira, Marco A.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (03): : 229 - 244